首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brassica napus leaves developed at low temperature display rapid in situ desaturation of monogalactosyldiacylglycerol (MGDG) fatty acids leading to the production of hexadecatrienoic/linolenic acid. This was shown by radioactivity-tracer experiments to occur via a sequence of desaturations proceeding from the initially synthesized palmitic/oleic acid molecular species to palmitic/linoleic acid, palmitoleic/linoleic acid, hexadecadienoic/linoleic acid, hexadecadienoic/linolenic acid, and finally to hexadecatrienoic/linolenic acid. The results suggest that there is increased activity in all five desaturation steps in leaves developed at low temperatures. Labeling data also indicate that there is another pool of MGDG which is more slowly desaturated before galactosylation to digalactosyldiacylglycerol (DGDG). Our data further suggest that relative rates of galactosylation of chloroplastic and cytosolic MGDG molecular species may regulate the final amounts of chloroplastic and cytosolic MGDG and DGDG in the leaf. We have proposed a model for chloroplastic biosynthesis and desaturation of galactosyldiacylglycerols in the leaves of Brassica napus, a 16:3 plant.  相似文献   

2.
硫代异鼠李糖甘油二酯(SQDG)是一种含硫的糖脂,分布于高等植物,藓类植物,蕨类植物,藻类植物以及大多数光合细菌的光合膜中。SQDG的含量与生物种类有关。在高等植物中含量一般为总脂的4%,而在藻类中其含量变化较大,一般为总脂含量的10%—70%。SQDG的合成是在叶绿体内被膜上完成的,催化SQDG合成的酶是UDP—SQ:DAG硫代异鼠李糖基转移酶。SQDG存在于纯化的叶绿体CF0-CF1ATPase、LHCⅡ辅基蛋白以及D1/D2异二聚体蛋白中,说明SQDG可能与膜蛋白复合物的结构和功能有关。SQDG还与植物的抗逆性有关。在磷缺乏时,SQDG能弥补PG含量的下降,使体内阴离子脂的含量维持在一个稳定的水平。近年来还发现SQDG能有效抑制真核生物DNA聚合酶和HIV反转录酶的活性。  相似文献   

3.
δ-Aminolevulinic acid was accumulated by greening cucumber (Cucumis sativus L. var. Alpha green) cotyledons, barley (Hordeum sativum var. Numar) leaves, and bean (Phaseolus vulgaris L. var. Red Kidney) leaves in the presence of various 14C-labeled precursors and levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydrase. The radioactivity in the accumulated δ-aminolevulinic acid was measured.  相似文献   

4.
This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochloro-phyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.  相似文献   

5.
Divinyl reductase (DVR) converts 8-vinyl groups on various chlorophyll intermediates to ethyl groups, which is indispensable for chlorophyll biosynthesis. To date, five DVR activities have been detected, but adequate evidence of enzymatic assays using purified or recombinant DVR proteins has not been demonstrated, and it is unclear whether one or multiple enzymes catalyze these activities. In this study, we systematically carried out enzymatic assays using four recombinant DVR proteins and five divinyl substrates and then investigated the in vivo accumulation of various chlorophyll intermediates in rice (Oryza sativa), maize (Zea mays), and cucumber (Cucumis sativus). The results demonstrated that both rice and maize DVR proteins can convert all of the five divinyl substrates to corresponding monovinyl compounds, while both cucumber and Arabidopsis (Arabidopsis thaliana) DVR proteins can convert three of them. Meanwhile, the OsDVR (Os03g22780)-inactivated 824ys mutant of rice exclusively accumulated divinyl chlorophylls in its various organs during different developmental stages. Collectively, we conclude that a single DVR with broad substrate specificity is responsible for reducing the 8-vinyl groups of various chlorophyll intermediates in higher plants, but DVR proteins from different species have diverse and differing substrate preferences, although they are homologous.Chlorophyll (Chl) molecules universally exist in photosynthetic organisms. As the main component of the photosynthetic pigments, Chl molecules perform essential processes of absorbing light and transferring the light energy in the reaction center of the photosystems (Fromme et al., 2003). Based on the number of vinyl side chains, Chls are classified into two groups, 3,8-divinyl (DV)-Chl and 3-monovinyl (MV)-Chl. The DV-Chl molecule contains two vinyl groups at positions 3 and 8 of the tetrapyrrole macrocycle, whereas the MV-Chl molecule contains a vinyl group at position 3 and an ethyl group at position 8 of the macrocycle. Almost all of the oxygenic photosynthetic organisms contain MV-Chls, with the exceptions of some marine picophytoplankton species that contain only DV-Chls as their primary photosynthetic pigments (Chisholm et al., 1992; Goericke and Repeta, 1992; Porra, 1997).The classical single-branched Chl biosynthetic pathway proposed by Granick (1950) and modified by Jones (1963) assumed the rapid reduction of the 8-vinyl group of DV-protochlorophyllide (Pchlide) catalyzed by a putative 8-vinyl reductase. Ellsworth and Aronoff (1969) found evidence for both MV and DV forms of several Chl biosynthetic intermediates between magnesium-protoporphyrin IX monomethyl ester (MPE) and Pchlide in Chlorella spp. mutants. Belanger and Rebeiz (1979, 1980) reported that the Pchlide pool of etiolated higher plants contains both MV- and DV-Pchlide. Afterward, following the further detection of MV- and DV-tetrapyrrole intermediates and their biosynthetic interconversion in tissues and extracts of different plants (Belanger and Rebeiz, 1982; Duggan and Rebeiz, 1982; Tripathy and Rebeiz, 1986, 1988; Parham and Rebeiz, 1992, 1995; Kim and Rebeiz, 1996), a multibranched Chl biosynthetic heterogeneity was proposed (Rebeiz et al., 1983, 1986, 1999; Whyte and Griffiths, 1993; Kolossov and Rebeiz, 2010).Biosynthetic heterogeneity refers to the biosynthesis of a particular metabolite by an organelle, tissue, or organism via multiple biosynthetic routes. Varieties of reports lead to the assumption that Chl biosynthetic heterogeneity originates mainly in parallel DV- and MV-Chl biosynthetic routes. These routes are interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). DV-MPE could be converted to MV-MPE in crude homogenates from etiolated wheat (Triticum aestivum) seedlings (Ellsworth and Hsing, 1974). Exogenous DV-Pchlide could be partially converted to MV-Pchlide in barley (Hordeum vulgare) plastids (Tripathy and Rebeiz, 1988). 8-Vinyl chlorophyllide (Chlide) a reductases in etioplast membranes isolated from etiolated cucumber (Cucumis sativus) cotyledons and barley and maize (Zea mays) leaves were found to be very active in the conversion of exogenous DV-Chlide a to MV-Chlide a (Parham and Rebeiz, 1992, 1995). Kim and Rebeiz (1996) suggested that Chl biosynthetic heterogeneity in higher plants may originate at the level of DV magnesium-protoporphyrin IX (Mg-Proto) and would be mediated by the activity of a putative 8-vinyl Mg-Proto reductase in barley etiochloroplasts and plastid membranes. However, since these reports did not use purified or recombinant enzyme, it is not clear whether the reductions of the 8-vinyl groups of various Chl intermediates are catalyzed by one enzyme of broad specificity or by multiple enzymes of narrow specificity, which actually has become one of the focus issues in Chl biosynthesis.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis (Arabidopsis thaliana) as an 8-vinyl reductase, namely, divinyl reductase (DVR). Chew and Bryant (2007) identified the DVR BciA (CT1063) gene of the green sulfur bacterium Chlorobium tepidum, which is homologous to AT5G18660. An enzymatic assay using a recombinant Arabidopsis DVR (AtDVR) on five DV substrates revealed that the major substrate of AtDVR is DV-Chlide a, while the other four DV substrates could not be converted to corresponding MV compounds (Nagata et al., 2007). Nevertheless, a recombinant BciA is able to reduce the 8-vinyl group of DV-Pchlide to generate MV-Pchlide (Chew and Bryant, 2007). Recently, we identified the rice (Oryza sativa) DVR encoded by Os03g22780 that has sequence similarity with the Arabidopsis DVR gene AT5G18660. We also confirmed that the recombinant rice DVR (OsDVR) is able to not only convert DV-Chlide a to MV-Chlide a but also to convert DV-Chl a to MV-Chl a (Wang et al., 2010). Thus, it is possible that the reductions of the 8-vinyl groups of various Chl biosynthetic intermediates are catalyzed by one enzyme of broad specificity.In this report, we extended our studies to four DVR proteins and five DV substrates. First, ZmDVR and CsDVR genes were isolated from maize and cucumber genomes, respectively, using a homology-based cloning approach. Second, enzymatic assays were systematically carried out using recombinant OsDVR, ZmDVR, CsDVR, and AtDVR as representative DVR proteins and using DV-Chl a, DV-Chlide a, DV-Pchlide a, DV-MPE, and DV-Mg-Proto as DV substrates. Third, we examined the in vivo accumulations of various Chl intermediates in rice, maize, and cucumber. Finally, we systematically investigated the in vivo accumulations of Chl and its various intermediates in the OsDVR (Os03g22780)-inactivated 824ys mutant of rice (Wang et al., 2010). The results strongly suggested that a single DVR protein with broad substrate specificity is responsible for reducing the 8-vinyl groups of various intermediate molecules of Chl biosynthesis in higher plants, but DVR proteins from different species could have diverse and differing substrate preferences even though they are homologous.  相似文献   

6.
植物赤霉素生物合成和信号传导的分子生物学   总被引:12,自引:0,他引:12  
王伟  朱平  程克棣 《植物学通报》2002,19(2):137-149,155
赤霉素 (GAs)在植物的种子萌发、茎的伸长和花的发育等许多方面起着非常重要的作用。最近几年 ,对GA生物合成及其信号传导途径相关基因的研究取得了惊人的进展。这些进展促进了对其生物合成及其信号传导途径的认识。GA生物合成相关基因的表达受到多种内源和外源因子的调控 ,其中研究较多的是发育阶段、激素水平和光信号等内源及环境因子的调控。GA信号传导通常处于抑制状态 ,GA信号通过去抑制作用激活该传导途径而促进GA刺激植物生长和发育。  相似文献   

7.
Isoprenoids are produced in all organisms but are especially abundant and diverse in plants. Two separate pathways operate in plant cells to synthesize prenyl diphosphate precursors common to all isoprenoids. Cytosolic and mitochondrial precursors are produced by the mevalonic acid (MVA) pathway whereas the recently discovered methylerythritol phosphate (MEP) pathway is located in plastids. However, both pathways may participate in the synthesis of at least some isoprenoids under certain circumstances. Although genes encoding all the enzymes from both pathways have already been cloned, little is known about the regulatory mechanisms that control the supply of isoprenoid precursors. Genetic approaches are providing valuable information on the regulation of both pathways. Thus, recent data from overexpression experiments in transgenic plants show that several enzymes share control over the metabolic flux through the MEP pathway, whereas a single regulatory step has been proposed for the MVA pathway. Identification of Arabidopsis thaliana mutants that are resistant to the inhibition of the MVA and the MEP pathways is a promising approach to uncover mechanisms involved in the crosstalk between pathways. The characterization of some of these mutants impaired in light perception and signaling has recently provided genetic evidence for a role of light as a key factor to modulate the availability of isoprenoid precursors in Arabidopsis seedlings. The picture emerging from recent data supports that a complex regulatory network appears to be at work in plant cells to ensure the supply of isoprenoid precursors when needed.  相似文献   

8.
高等植物胚胎发生的分子调控   总被引:8,自引:0,他引:8  
  相似文献   

9.
甜菜碱是一种无毒的渗透调节剂.在盐胁迫下,植物体内迅速积累甜菜碱等小分子化合物以维持细胞内外的渗透平衡,从而维持细胞正常的生理功能.本文对甜菜碱的生理作用、生物合成、基因工程及植物抗盐的分子机制作一综述,为培育理想的耐盐植物新品系提供参考.  相似文献   

10.
The age-related changes in the temperature dependence curves (TDC) of chlorophyll fluorescence were studied in leaf segments of wheat (Triticum aestivumL.), tomato (Lycopersicum esculentumMill.), and cucumber (Cucumis sativumL.) plants grown under controlled photoculture conditions. Three major TDC patterns of chlorophyll fluorescence were identified within the temperature range of 25–70°C, with each of the patterns corresponding to a certain phase of leaf development. The transition from one type of thermogram to another was a gradual and ordered process. The magnitude of the low-temperature TDC peak increased until leaves completely expanded and declined with leaf senescence. In the course of leaf senescence, the thermograms exhibited an additional shoulder, which further changed into a peak at 55–65°C with increasing magnitude. Our data provide the basis for assessing leaf age from the type of chlorophyll fluorescence thermogram and the changes in the particular indices characteristic of TDC of chlorophyll fluorescence.  相似文献   

11.
A review of available Caribbean Island red-lists species (CR and EN categories based on the IUCN guidelines from 2001, and E category established according to the IUCN guidelines from 1980) is presented. A database of over 1,300 endemic species that are either Critically Endangered or Endangered sensu IUCN was created. There are molecular systematic studies available for 112 of them. Six of these species (in six genera) are the only members of early divergent lineages that are sister to groups composed of a large number of clades. Seven of the species (in seven genera) belong to clades that have a small number of taxa but are sister to species/genus-rich clades. Ten of the species (in six genera) are sister to taxa restricted to South America or nested in clades endemic to this region. Fifty-seven of the species (in 35 genera) are sister to Caribbean Island endemic species. Erigeron belliastroides, an Endangered (EN) Cuban endemic, is sister to the Galapagos genus Darwiniothamnus. The phylogenetic placement of four of the threatened species resulted in changes in their taxonomic placement; they belong to polyphyletic or paraphyletic genera.  相似文献   

12.
13.
Spectral methods were used to study the sequences of chlorophyll biosynthesis reactions in etiolated pea, bean, and maize plants in early stages (3-4 days) of growth. For these juvenile plants, along with the reaction chain known for mature (7-9 day-old) plants, a new reaction chain was found which started with phototransformation of the long-wavelength form PChld 686/676 into PChld 653/648. (PChld 653/648 differs from the main known precursor form PChld 655/650). The subsequent photoreduction of PChld 653/648 leads to the formation of Chld 684/676, which is transformed into Chl 688/680 in the course of a dark reaction. After completion of this reaction, fast (20-30 sec) quenching of the fluorescence of the reaction product is observed with the formation of non-fluorescent Chl 680. The reaction accompanied by pigment fluorescence quenching is absent in pea mutants with depressed function of Photosystem II reaction centers. This suggests that the newly found reaction chain leads to the formation of chlorophyll of the Photosystem II reaction center.  相似文献   

14.
The phyllosphere is one of the largest habitats for terrestrial microorganisms. To gain a better insight into the factors underlying the composition of bacterial communities inhabiting leaf surfaces we performed culture-dependent and independent (Denaturing Gradient Gel Electrophoresis) analyses on the bacteria associated with the leaves of three plant species: Amygdalus communis, Citrus paradisi, and Nicotiana glauca. We found that the culturable classes Bacilli and Actinobacteria were the predominant classes on the phyllosphere of all three plant species. In contrast to this consistency on the bacterial class level, we found a significant variation on the bacterial species-level based on the culturable methods. Although some variation was detected among individual plants within one plant species, the inter-specific variability exceeded the intra-specific variability. C. paradisi leaf surface had the highest predicted total species richness (Chao 2 and ICE) and the highest species diversity (βw) among the three plant species. Our findings demonstrate that environmental conditions, mainly the plant species within a site, govern the bacterial community composition on leaf surfaces.  相似文献   

15.
Biosynthesis of Caffeine in Leaves of Coffee   总被引:6,自引:0,他引:6       下载免费PDF全文
The levels of endogenous caffeine and theobromine were much higher in buds and young leaves of Coffea arabica L. cv Kent than in fully developed leaves. Biosynthesis of caffeine from 14C-labeled adenine, guanine, xanthosine, and theobromine was observed, whereas other studies (H. Ashihara, A.M. Monteiro, T. Moritz, F.M. Gillies, A. Crozier [1996] Planta 198: 334-339) have indicated that there is no detectable incorporation of label into caffeine when theophylline and xanthine are used as substrates for in vivo feeds with leaves of C. arabica. The capacity for caffeine biosynthesis, especially from guanine and xanthosine, was reduced markedly in both fully developed mature and aged leaves. Data obtained in pulse-chase experiments with young leaves indicate the operation of an AMP -> IMP -> xanthosine 5[prime]-monophosphate (or GMP -> guanosine) -> xanthosine -> 7-methylxanthosine -> 7-methylxanthine -> theobromine -> caffeine pathway. The data obtained provide strong evidence against proposals by G.M. Nazario and C.J. Lovatt ([1993] Plant Physiol 103: 1203-1210) concerning the independence of caffeine and theobromine biosynthesis pathways and the role of xanthine as a key intermediate in caffeine biosynthesis.  相似文献   

16.
郑桂灵 《西北植物学报》2011,31(6):1203-1208
以单半乳糖甘油二脂(MGDG)相对含量比野生烟草显著降低的突变体(M18)及野生型烟草为材料,通过对转基因烟草叶绿体类囊体膜的低温荧光、放氧活性以及叶片的叶绿素荧光分析,研究MGDG部分缺失对烟草叶片光合特性的影响。结果表明,在低温下(77K)MGDG部分缺失并不影响烟草叶绿素荧光发射峰(F683和F730)的位置,但使光系统Ⅱ(PSⅡ)及光系统Ⅰ(PSⅠ)的荧光发射峰的强度减弱,F683/F730比值降低,直接影响激发能在PSⅡ和PSⅠ之间的均衡分配,使叶绿素a和叶绿素b之间的能量传递受阻,降低光能转化效率;MGDG部分缺失使PSⅡ放氧活性下降了72.9%;转基因烟草叶绿素荧光参数中最大光化学效率(Fv/Fm)、暗适应最大荧光(Fm)、实际光化学效率(Yield)、光化学猝灭系数(qP)比野生型烟草分别降低了7%、49%、32%和18%,并以Fm降幅最大。研究证明,MGDG在维持植物叶绿体类囊体膜的功能,特别是PSⅡ的功能方面起着重要的作用。  相似文献   

17.
以甲基紫精 (MV) 0~ 1mmol/L在 15 0 0 μmolm-2s-1光下处理C3 植物花生、水稻和C4 植物玉米、甘蔗的叶圆片 30min ,O- ·2 产生速率随MV浓度提高而加快。MV浓度超过 10 μmol/L ,光合放氧出现负值并持续增大。光氧化作用降低叶绿素荧光参数Fv/Fm ,ΦPSⅡ和qP,而qN 则或提高 (C3 植物 ,MV 10 μmol/L )或几乎不变甚至有所降低 (C4 植物或C3 植物在高浓度MV下 )。热耗散系数KD 的变化与qN 相似。与C4 植物相比 ,C3 植物的O- ·2 产生速率和光下吸氧的速率较高 ,SOD活性较低 ,Fv/Fm ,ΦPSⅡ和qP 的降低幅度比C4植物大。对田间玉米叶片的MV涂抹试验看到 ,MV降低光合CO2 同化速率的同时 ,也降低气孔导度、PEP羧化酶和SOD活性 ,Ci增大。结果表明MV光氧化作用刺激PSⅠ的O2 光还原作用 ,引起PSⅡ部份失活 ,气孔部份关闭和关键酶类氧化失活 ,从而抑制了光合作用  相似文献   

18.
徐雨  冉江洪  岳碧松 《四川动物》2008,27(3):429-431
依据郑光美<中国鸟类分类与分布名录>的分类系统,在前人的研究基础之上,结合近年来发现的新分布记录,对四川的鸟类重新进行了统计.结果 表明,四川省鸟类有21目80科683种,分别占全国鸟类目的87.50%,科的79.21%,种的51.28%,其中非雀形目有20目42科273种,雀形目有38科410种.四川省有国家Ⅰ级重点保护鸟类17种,Ⅱ级保护鸟类80种;CITES(2007)附录Ⅰ有9种,附录Ⅱ有62种;IUCN(2007)红色名录有42种;中国鸟类特有种37种,占全国鸟类特有种的52.1%.  相似文献   

19.
文章介绍植物亚麻荠素合成过程中的中间体、催化酶和相关基因的研究进展.  相似文献   

20.
Monospecific polyclonal antibodies against thylakoid ferredoxin-NADP+ oxidoreductase and its binding protein from Spinacia oleracea were used to detect the presence of these proteins in different higher plants, including C3, C4, and Crassulacean acid metabolism species. A remarkable conservation of antigenic determinants in all the species analyzed was demonstrated for both the reductase and its binding protein. The association of these polypeptides in a complex was detected by immunoprecipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号