首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fibrinogen inhibited 125I-high molecular weight kininogen (HMWK) binding and displaced bound 125I-HMWK from neutrophils. Studies were performed to determine whether fibrinogen could bind to human neutrophils and to describe the HMWK-fibrinogen interaction on cellular surfaces. At 4 degrees C, the binding of 125I-fibrinogen to neutrophils reached a plateau by 30 min and did not decrease. At 23 and 37 degrees C, the amount of 125I-fibrinogen bound peaked by 4 min and then decreased over time because of proteolysis of fibrinogen by human neutrophil elastase (HNE). Zn++ (50 microM) was required for binding of 125I-fibrinogen to neutrophils at 4 degrees C and the addition of Ca++ (2 mM) increased the binding twofold. Excess unlabeled fibrinogen or HMWK completely inhibited binding of 125I-fibrinogen. Fibronectin degradation products (FNDP) partially inhibited binding, but prekallikrein and factor XII did not. The binding of 125I-fibrinogen at 4 degrees C was reversible with a 50-fold molar excess of fibrinogen or HMWK. Binding of 125I-fibrinogen, at a concentration range of 5-200 micrograms/ml of added radioligand, was saturable with an apparent Kd of 0.17 microM and 140,000 sites/cell. The binding of 125I-fibrinogen to neutrophils was not inhibited by the peptide RGDS derived from the alpha chain of fibrinogen or by the mAb 10E5 to the platelet glycoprotein IIb/IIIa heterodimer. Fibrinogen binding was inhibited by a gamma-chain peptide CYGHHLGGAKQAGDV and by mAb OKM1 but was not inhibited by OKM10, an mAb to a different domain of the adhesion glycoprotein Mac-1 (complement receptor type 3 [CR3]). HMWK binding to neutrophils was not inhibited by OKM1. These observations were consistent with a further finding that fibrinogen is a noncompetitive inhibitor of 125I-HMWK binding to neutrophils. Fibrinogen binding to ADP-stimulated platelets was increased twofold by Zn++ (50 microM) and was inhibited by HMWK. These studies indicate that fibrinogen specifically binds to the C3R receptor on the neutrophil surface through the carboxy terminal of the gamma-chain and that HMWK interferes with the binding of fibrinogen to integrins on both neutrophils and activated platelets.  相似文献   

2.
Binding of plasminogen to cultured human endothelial cells   总被引:26,自引:0,他引:26  
Endothelial cells are known to release the two major forms of plasminogen activator, tissue plasminogen activator (TPA) and urokinase. We have previously demonstrated that plasminogen (PLG) immobilized on various surfaces forms a substrate for efficient conversion to plasmin by TPA (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, P. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human PLG to cultured human umbilical vein endothelial cell (HUVEC) monolayers, utilizing a newly devised cell monolayer enzyme-linked immunosorbent assay system. PLG binding to HUVEC was concentration dependent and saturable at physiologic PLG concentration (2 microM). Binding of PLG was 70-80% inhibited by 10 mM epsilon-aminocaproic acid, suggesting that it is largely mediated by the lysine-binding sites of PLG. PLG bound at an intermediate level to human fibroblasts, poorly to human smooth muscle cells, and not at all to bovine smooth muscle or bovine endothelial cells; unrelated proteins such as human albumin and IgG failed to bind HUVEC. PLG binding to HUVEC was rapid, reaching a steady state within 20 min, and quickly reversible. 125I-PLG bound to HUVEC with an estimated Kd of 310 +/- 235 nM (S.E.); each cell contained 1,400,000 +/- 1,000,000 (S.E.) binding sites. Functional studies demonstrated that HUVEC-bound PLG is activatable by TPA according to Michaelis-Menten kinetics (Km, 5.9 nM). Importantly, surface-bound PLG was activated with a 12.7-fold greater catalytic efficiency than fluid phase PLG. These results indicate that PLG binds to HUVEC in a specific and functional manner. Binding of PLG to endothelial cells may play a pivotal role in modulating thrombotic events at the vessel surface.  相似文献   

3.
We have previously shown that the zymogen factor XI (FXI) binds to activated platelets but not to human umbilical vein endothelial cells (HUVEC), a conclusion that is in conflict with previous reports stating that FXI binds to 2.7-13 x 10(6) high affinity sites per HUVEC (Berrettini, M., Schleef, R. R., Heeb, M. J., Hopmeier, P., and Griffin, J. H. (1992) J. Biol. Chem. 267, 19833-19839; Shariat-Madar, Z., Mahdi, F., and Schmaier, A. H. (2001) Thromb. Haemostasis 85, 544-551). It has also been reported that activated FXI (FXIa) binds to 1.5 x 10(6) sites per HUVEC and promotes the activation of factor IX by cell bound FXIa (Berrettini, M., Schleef, R. R., Heeb, M. J., Hopmeier, P., and Griffin, J. H. (1992) J. Biol. Chem. 267, 19833-19839). Therefore, the binding of FXIa to activated platelets was compared with FXIa binding to HUVEC and HEK293 cells immobilized on microcarrier beads. Specific and saturable zinc-dependent FXIa binding was demonstrated to 250 +/- 48 sites per activated platelet (K(D) = 1.7 +/- 0.78 nm) and 6.5 +/- 0.4 x 10(4) sites per HUVEC (K(D) = 2.4 +/- 0.5 nm), whereas no binding to HEK293 cells was detected. A titration with high molecular weight kininogen had no effect on FXIa binding to platelets, but revealed a concentration-dependent decrease in the amount of FXIa bound to HUVEC. The rate of factor IXa generation catalyzed by FXIa was unaffected by the presence of surfaces; however only the activated platelet surface protected FXIa from inhibition by protease nexin 2. The results presented here confirm the conclusion that activated platelets are procoagulant while unstimulated endothelial cells are not.  相似文献   

4.
The interaction of urokinase-type plasminogen activators with receptors on the surface of endothelial cells may play an important role in the regulation of fibrinolysis and cell migration. Therefore, we investigated whether human umbilical vein endothelial cells (HUVEC) express receptors for single-chain urokinase (scu-PA) on the cell surface and examined the effect of such binding on plasminogen activator activity. Binding of 125I-labeled scu-PA to HUVEC, performed at 4 degrees C, was saturable, reversible, and specific (k+1 4 +/- 1 X 10(6) min-1 M-1, k-1 6.2 +/- 1.4 X 10(-3) min-1, Kd 2.8 +/- 0.1 nM; Bmax 2.2 +/- 0.1 X 10(5) sites/cell; mean +/- S.E.). Binding of radiolabeled scu-PA was inhibited by both natural and recombinant wild-type scu-PA, high molecular weight two-chain u-PA (tcu-PA), catalytic site-inactivated tcu-PA, an amino-terminal fragment of u-PA (amino acids 1-143), and a smaller peptide (amino acids 4-42) corresponding primarily to the epidermal growth factor-like domain. Binding was not inhibited by low molecular weight urokinase or by a recombinant scu-PA missing amino acids 9-45. Cell-bound scu-PA migrated at its native molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of plasminogen, scu-PA bound to endothelial cells generated greater plasmin activity than did scu-PA in the absence of cells. In contrast, when tcu-PA was added directly to HUVEC, sodium dodecyl sulfate-stable complexes formed with cell or matrix-associated plasminogen activator inhibitors with a loss of plasminogen activator activity. These studies suggest that endothelial cells in culture express high affinity binding sites for the epidermal growth factor domain of scu-PA. Interaction of scu-PA with these receptors may permit plasminogen activator activity to be expressed at discrete sites on the endothelial cell membrane.  相似文献   

5.
Transforming growth factor beta (TGF beta) regulates the growth of human umbilical vein endothelial cells (HUVEC) differently depending on the isoform of TGF beta and the culture conditions. The cells are resistant to growth inhibition by TGF beta when the cells are cultured on substratum coated with gelatin. However, the proliferation of HUVEC cultured on substratum without a gelatin coating is inhibited by TGF beta, depending on the isoform and concentration of TGF beta. Binding assays with 125I-TGF beta 1 reveal that HUVEC contain a single class of high-affinity (Kd = 4.4 pM) TGF beta 1 binding sites with 8500 sites per cell. Affinity cross-linking studies demonstrate that HUVEC express 180 and 80 kDa TGF beta 1 binding sites that do not bind TGF beta 2. The reduction and the removal of glycosaminoglycans does not affect the electrophoretic mobility of the 180-kDa binding protein cross-linked with 125I-TGF beta 1. Therefore, the 180-kDa TGF beta 1 binding protein is not related to the type III TGF beta receptor, but might be a novel TGF beta 1-specific receptor/binding protein expressed on vascular endothelial cells. The expression of TGF beta 1 binding sites is not affected by the presence or absence of the gelatin coating on the culture substratum. The data suggest that a gelatin coating does not regulate the susceptibility of HUVEC to TGF beta 1 at the level of the receptor/binding proteins, and that growth inhibition of HUVEC by TGF beta 1 is linked to the regulation of extracellular matrices required for the interaction between the cells and the substratum.  相似文献   

6.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

7.
Prekallikrein (PK) activation on human umbilical endothelial cells (HUVEC) presumably leads to bradykinin liberation. On HUVEC, PK activation requires the presence of cell-bound high-molecular-weight kininogen (HK) and Zn(2+). We examined the Zn(2+) requirement for HK binding to and the consequences of PK activation on endothelial cells. Optimal HK binding (14 pmol/10(6) HUVEC) is seen with no added Zn(2+) in HEPES-Tyrode buffer containing gelatin versus 16--32 microM added Zn(2+) in the same buffer containing bovine serum albumin. The affinity and number of HK binding sites on HUVEC are a dissociation constant of 9.6 +/- 1.8 nM and a maximal binding of 1.08 +/- 0.26 x 10(7) sites/cell (means +/- SD). PK is activated to kallikrein by an antipain-sensitive mechanism in the presence of HK and Zn(2+) on HUVEC, human microvascular endothelial cells, umbilical artery smooth muscle cells, and bovine pulmonary artery endothelial cells. Simultaneous with kallikrein formation, bradykinin (5.0 or 10.3 pmol/10(6) HUVEC in the absence or presence of lisinopril, respectively) is liberated from cell-bound HK. Liberated bradykinin stimulates the endothelial cell bradykinin B2 receptor to form nitric oxide. Assembly and activation of PK on endothelial cells modulates their physiological activities.  相似文献   

8.
Zymogens and cofactors of blood coagulation   总被引:6,自引:0,他引:6  
Blood coagulation is a system in which a series of zymogens of serine proteases are sequentially activated. In this regard, there is little fundamental difference between coagulation and the activation of the homologous pancreatic zymogens. There are, however, several aspects unique to coagulation which are discussed in detail. These are (1) the requirement for a high-molecular-weight protein or lipoprotein cofactor for optimal reaction rates, (2) the requirement for membranes or a membrane-like surface which further distinguishes this system; (3) a metal ion requirement for most reactions (in contrast to the pancreatic serine proteases) relating to the content of the newly described amino acid gamma-carboxyglutamic acid in the four vitamin K-dependent proteins, regarding which recent data relating to the metal binding sites on prothrombin are discussed in detail; and (4) the uniqueness of the initiating reactions in comparison to those which activate the pancreatic zymogens, insofar as no enzyme corresponding to enterokinase has been identified. The implications of this phenomenon are analyzed with particular attention to the potential role of the endogenous activity of certain zymogens in initiating coagulation. The article deals finally with the specific problems attendant on analyzing a system in which many serine proteases lacking absolute specificity are generated and regulated.  相似文献   

9.
125I-Hyaluronic acid (HA) uniquely modified only at the reducing end (Raja, R.H., LeBoeuf, R. D., Stone, G.W., and Weigel, P.H. (1984) Anal. Biochem. 139, 168-177) binds specifically to rat liver endothelial cells in suspension or in culture. About 67-85% of the HA binding sites in isolated cells in suspension and 50% in cultured cells were intracellular, since they were exposed after permeabilizing cells with digitonin. Specific 125I-HA binding at 4 degrees C varied from 60 to 80% for intact cells and from 70 to 90% for permeabilized cells. Freshly isolated permeabilized cells bound about 500,000 HA molecules/cell at saturation. Within 5 h of culture, however, total HA binding decreased to 250,000 molecules/cells and then remained constant for at least 36 h. Surface HA receptor activity was essentially the same on cultured cells or cells in suspension (approximately 10(5)/cell). Cultured cells had 1.8 x 10(5) fewer intracellular receptors/cell. The affinities of surface and intracellular receptors of cells in culture and in suspension were essentially the same. The average Kd, determined by equilibrium binding studies, was 5.8 +/- 2.8 x 10(-8) M (n = 12). Dissociation of bound 125I-HA from permeable cultured cells was rapid (t1/2 = 30.9 min;kappa off = 3.7 x 10(-4) s-1). A variety of carbohydrates had essentially identical effects on 125I-HA binding to surface or total cellular receptors in cells in culture or in suspension. Chondroitin sulfate and heparin competed almost as effectively as unlabeled HA for 125I-HA binding at 4 degrees C. Other saccharides including polygalacturonic acid, dextran, glucuronic acid, and N-acetylglucosamine competed poorly or not at all. We conclude that (i) the 125I-HA binding sites within liver endothelial cells are HA receptors, identical in affinity and specificity to those on the cell surface; (ii) the distribution of cellular HA receptors is similar to other receptor systems with about 50-80% being intracellular; (iii) the liver endothelial cell HA receptor recognizes several glycosaminoglycans; and (iv) the liver endothelial receptor is different in function and characteristics than the fibroblast HA receptor.  相似文献   

10.
Cells of monocytic differentiation can promote proteolytic activation of factor X following binding to the adhesive receptor Mac-1. We now show that the product, factor Xa, binds to a second receptor on these cells in a Ca2+-dependent reaction. Functionally, this results in the capacity to convert prothrombin to thrombin. The factor Xa receptor was identified by monoclonal antibody (7G12) reactive with plasma factor V/Va, but selected for reactivity with THP-1 cells. It reacted with 71.2 +/- 10.1% of monocytes, bound 153,600 +/- 33,500 sites/THP-1 cell, blocked binding of 125I-factor Xa, inhibited formation of thrombin, and immunoprecipitated 125I-factor Xa chemically cross-linked to its receptor on THP-1 cells. Following surface iodination or intrinsic labeling of THP-1 cells, antibody 7G12 immunoprecipitated a 74-kDa molecular species, similar to plasma factor Va light chain. Thus, monocytes and monocyte-like cells synthesize and express a factor V/Va-like receptor for factor Xa and organize a functional prothrombinase complex. The simultaneous membrane coexpression of a factor X receptor (Mac-1) and a factor Xa receptor as demonstrated by two-color flow cytofluorometric analysis of monocytes or THP-1 cells is consistent with a sequential receptor cascade for coordinated molecular assembly of coagulation proteins on specialized cells.  相似文献   

11.
The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells (KD of 42.0 +/- 3.8 pM and 70,526 +/- 6121 binding sites/cell for the high-affinity sites, KD of 0.933 +/- 0.27 nM and 630,252 +/- 172,459 sites/cell for low-affinity binding sites). The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely 125I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound 125I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At 37 degrees C, 30% of the cell-associated 125I-bFGF became resistant to the acidic wash after 90 min, suggesting that this fraction of bound 125I-bFGF was internalized. At this temperature, degradation of the internalized ligand was followed after 1 h by the appearance of three major bands of 15,000, 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.  相似文献   

12.
To address the question of whether initiation of the consolidation phase of coagulation occurs on platelets or on endothelium, we have examined the interaction of coagulation factor XI with human umbilical vein endothelial cells (HUVEC) and with platelets. In microtiter wells factor XI binds to more sites in the absence of HUVEC (1.8 x 10(10) sites/well, K(D) = 2.6 nm) than in their presence (1.3 x 10(10) sites/well, K(D) = 12 nm) when high molecular weight kininogen (HK) and zinc are present. Binding was volume-dependent and abrogated by HUVEC or Chinese hamster ovary cells and was a function of nonspecific binding of HK to the artificial plastic surface. Factor XI did not bind to HUVEC or to HEK293 cell monolayers anchored to microcarrier beads. Activation of HUVEC resulted in von Willebrand's factor secretion, but factor XI binding was not observed. Only activated platelets supported factor XI binding in the presence of HK and zinc (K(D) = 8 nm, B(max) = 1319 sites/cell). Activation of factor XI was observed in plasma in the presence of platelets activated by the thrombin receptor activation peptide but not with activated HUVEC. These results support the concept that activated platelets, but not endothelial cells, expose a procoagulant surface for binding and activating factor XI, thereby initiating the consolidation phase of coagulation.  相似文献   

13.
Previous studies on the interaction of high molecular weight kininogen (HK) with endothelial cells have reported a large number of binding sites (106-107 sites/cell) with differing relative affinities (KD = 7-130 nm) and have implicated various receptors or receptor complexes. In this study, we examined the binding of HK to human umbilical vein endothelial cells (HUVEC) with a novel assay system utilizing HUVEC immobilized on microcarrier beads, which eliminates the detection of the high affinity binding sites found nonspecifically in conventional microtiter well assays. We report that HK binds to 8.5 x 104 high affinity (KD = 21 nm) sites per HUVEC, i.e. 10-100-fold fewer than previously reported. Although HK binding is unaffected by the presence of a physiological concentration of prekallikrein, factor XI abrogates HK binding to HUVEC in a concentration-dependent manner. Disruption of the naturally occurring complex between factor XI and HK by the addition of a 31-amino acid peptide mimicking the factor XI-binding site on HK restored HK binding to HUVEC. Furthermore, HK inhibited thrombin-stimulated von Willebrand factor release by HUVEC but not thrombin receptor activation peptide (SFLLRN-amide)-stimulated von Willebrand factor release. Factor XI restored the ability of thrombin to stimulate von Willebrand factor release in the presence of low HK concentrations. These results suggest that free HK, or HK in complex with prekallikrein but not in complex with factor XI, interacts with the endothelium and can maintain endothelial cell quiescence by preventing endothelial stimulation by thrombin.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) is a bifunctional, dose-dependent regulator of endothelial cell proliferation induced in vitro by heparin-binding growth factor 1 (HBGF-1, acidic FGF). Here we have examined the relationship between endothelial cell growth and the expression of cell surface binding sites for TGF-beta and HBGF-1. Fetal bovine heart endothelial cell (FBHEC) growth was stimulated by low concentrations of TGF-beta and inhibited by high concentrations of TGF-beta while expressing two distinct classes of TGF-beta binding sites with binding constants of 24 pM (6300 sites/cell) and 900 pM (12,000 sites/cell). In contrast, human umbilical vein endothelial cells (HUVEC), whose growth was slightly promoted by TGF-beta, exhibited a single class of high-affinity TGF-beta binding sites (Kd = 45 pM, 4500 sites/cell). Affinity crosslinking using [125I]TGF-beta showed that FBHEC expressed two distinct low molecular weight TGF-beta binding sites (Mr 85,000 and 58,000), while HUVEC expressed a single type of low molecular weight TGF-beta binding site (Mr 85,000). As detected by binding of [125I]HBGF-1, preincubation of FBHEC with high concentrations of TGF-beta transmodulated the expression of high-affinity HBGF-1 receptors. In contrast, no transmodulation of HBGF-1 receptors occurred in FBHEC during preincubation with low concentrations of TGF-beta. Furthermore, preincubation of HUVEC with TGF-beta did not transmodulate the expression of HBGF-1 receptors. The data suggest that the ability of TGF-beta to stimulate or inhibit endothelial cell proliferation in a dose-dependent manner correlated with the expression of specific TGF-beta binding site subtypes and involved the transmodulation of HBGF-1 receptors.  相似文献   

15.
16.
Factor XI is a dimeric protein and circulates in plasma complexed with high molecular weight kininogen (HMWK). We investigated the binding of HMWK to factor XIa utilizing two active site directed fluorescent probes: nitrobenzoxadiazole aminopentyl methylphosphonofluoridate for serine and dansyl-glu-gly-arg-chloromethyl ketone for histidine. In the presence of saturating amounts of HMWK, the fluorescence of factor XIa-fluorophore was quenched by approximately 28% for each probe. Titrations of the fluorescent factor XIa with HMWK revealed that each subunit of factor XIa binds one molecule of HMWK with a Kd approximately 3.4 X 10(-8)M.  相似文献   

17.
Decay accelerating factor (DAF) is a cell-surface phosphatidylinositol-anchored protein that protects the cell from inadvertent complement attack by binding to and inactivating C3 and C5 convertases. We have measured DAF on human umbilical vein endothelial cells (HUVEC) by immunoradiometric assay after its removal by phosphatidylinositol-specific phospholipase C or Nonidet P-40 detergent extraction and have previously demonstrated that DAF synthesis can be stimulated by phorbol ester activation of protein kinase C. We now report that although stimulation (4-48 h) of HUVEC with various cytokines, including TNF, IL-1, and IFN-gamma, did not alter DAF levels, wheat germ agglutinin (WGA) (5-50 micrograms/ml), a lectin specific for binding N-acetyl neuraminic acid and N-acetyl glucosamine residues, increased DAF levels fivefold when incubated with HUVEC for 12 to 24 h. The lectins Con A and PHA also stimulated DAF expression twofold, whereas a number of others including Ulex europaeus, Bandeiraea simplicifolia lectin I, and Ricinus communis agglutinin I, which bind to endothelial cells, were inactive. The increase in DAF by WGA was inhibited by N-acetyl glucosamine (10-50 mM) but by neither N-acetyl neuraminic acid nor removal of surface N-acetyl neuraminic acid with neuraminidase. However, succinylated WGA, which has unaltered affinity for N-acetyl glucosamine but not longer binds N-acetyl neuraminic acid, was inactive. These data suggest that the binding of WGA to sugar residues alone is not sufficient to trigger DAF expression and that occupation of additional, specific sites are required. The increase in DAF levels on HUVEC was blocked by inhibitors of RNA and protein synthesis. We conclude that continuous occupation by WGA of specific binding sites on HUVEC triggers events leading to DAF synthesis. This unique, long term stimulation of endothelial cells by lectins may be relevant to cell:cell interactions at the endothelium.  相似文献   

18.
Rubio LM  Flores E  Herrero A 《FEBS letters》1999,459(3):358-362
Cathepsin B and other lysosomal cysteine proteinases are synthesized as inactive zymogens, which are converted to their mature forms by other proteases or by autocatalytic processing. Procathepsin B autoactivation was shown in vitro at pH 4.5 to be a bimolecular process with K(s) and k(cat) values of 2.1+/-0.9 microM and 0.12+/-0.02 s(-1)6.0. However, in the presence of 0.5 microg/ml of dextran sulfate, relatively rapid processing is observed even at pH 6.5 (t(1/2) approximately 90 min), suggesting that glycosaminoglycans are involved in in vivo processing of lysosomal cysteine proteases.  相似文献   

19.
Localization of proteases to the surface of endothelial cells and remodeling of the extracellular matrix (ECM) are essential to endothelial cell tube formation and angiogenesis. Here, we partially localized active cathepsin B and its cell surface binding partners, S100A/p11 (p11) of the annexin II heterotetramer (AIIt), to caveolae of human umbilical vein endothelial cells (HUVEC). Via a live-cell proteolysis assay, we observed that degradation products of quenched-fluorescent (DQ)-proteins (i.e. gelatin and collagen IV) colocalized intracellularly with caveolin-1 (cav-1) of HUVEC grown in either monolayer cultures or in vitro tube formation assays. Activity-based probes that bind covalently to active cysteine cathepsins and degradation products of DQ-collagen IV partially localized to intracellular vesicles that contained cav-1 and active cysteine cathepsins. Biochemical analyses revealed that the distribution of active cathepsin B in caveolar fractions increased during in vitro tube formation. Pro-uPA, uPAR, MMP-2 and MMP-14, which have been linked with cathepsin B to ECM degradation pathways, were also found to increase in caveolar fractions during in vitro tube formation. Our findings are the first to demonstrate through live-cell imaging ECM degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation.  相似文献   

20.
Several groups have demonstrated that radioiodinated tissue-type plasminogen activator (t-PA) binds to saturable sites on human umbilical vein endothelial cells (HUVECs) in culture (Hajjar, K. A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719; Beebe, D. P. (1987) Thromb. Res. 46, 241-254; Barnathan, E. S., Kuo, A., van der Keyl, H., McCrae, K. R., Larsen, G. L., and Cines, D. B. (1988) J. Biol. Chem. 263, 7792-7799). Here we report that most of the specific binding of 125I-t-PA to our HUVEC cultures is accounted for by binding to (i) plasminogen activator inhibitor type 1 (PAI-1), a t-PA inhibitor produced in abundance by HUVECs; and (ii) specific binding sites present on the plastic culture surface. The contribution of the sites on plastic can be eliminated by taking several precautions. Then, most or all of the specifically bound 125I-t-PA is present in a sodium dodecyl sulfate-stable 110-kDa 125I-t-PA.PAI-1 complex. Interestingly, a radioiodinated mutant form of t-PA, S478A, which is catalytically inactive and therefore unable to form the covalent complex with PAI-1, still binds to HUVECs. In fact, this ligand binds to HUVECs in 10-30-fold greater amounts than does wild-type 125I-t-PA (resulting in greater than 1 x 10(7) S478A 125I-t-PA molecules bound/cell at 12 nM ligand concentration). In contrast, diisopropyl fluorophosphate-treated t-PA binds to HUVECs in much smaller amounts than does wild-type t-PA. Several findings suggest that PAI-1 is a major binding site for S478A t-PA. The vast amount of binding observed with S478A t-PA, compared with wild-type t-PA, may be accounted for by an observed large scale release of wild-type 125I-t-PA.PAI-1 complexes from the solid phase (cells or extracellular matrix) into the culture medium. Immunoprecipitation experiments demonstrate that, in contrast to wild-type t-PA, S478A t-PA does not extract [35S]methionine-PAI antigen from metabolically labeled extracellular matrix. It is proposed that t-PA releases PAI-1 from the solid phase when it forms the irreversible covalent complex with the inhibitor, a process that does not occur with the catalytically inactive mutant form of t-PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号