首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding a Na(+)/H(+) antiporter was obtained from the genome of Halobacillus aidingensis AD-6(T), which was sequenced and designated as nhaH. The deduced amino acid sequence of the gene was 91% identical to the NhaH of H. dabanensis, and shared 54% identity with the NhaG of Bacillus subtilis. The cloned gene enable the Escherichia coli KNabc cell, which lack all of the major Na(+)/H(+) antiporters, to grow in medium containing 0.2 M NaCl or 10 mM LiCl. The nhaH gene was predicted to encode a 43.5 kDa protein (403 amino acid residues) with 11 putative transmembrane regions. Everted membrane vesicles prepared from E. coli KNabc cells carrying NhaH exhibited Na(+)/H(+) as well as Li(+)/H(+) antiporter activity, which was pH-dependent with the highest activity at pH 8.0, and no K(+)/H(+) antiporter activity was detected. The deletion of hydrophilic C-terminal amino acid residues showed that the short C-terminal tail was vital for Na(+)/H(+) antiporter activity.  相似文献   

2.
The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether 65Zn2+ transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10–15 s and approached equilibrium by 120 s. In the absence of sodium, 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 M ATP (increase in Km and Jmax) and inhibited by the simultaneous presence of 150 mol l–1 ATP+250 mol l–1 vanadate (decrease in both Km and Jmax). In the absence of ATP, 65Zn2+ influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l–1) and exhibited a Hill Coefficient of 4.03±1.14, consistent with the exchange of 3 Na+/1Zn2+. Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle 65Zn2+ influx by both the ATP-dependent (Ki=205 nmol l–1 Ca2+) and sodium-dependent (Ki=2.47 mol l–1 Ca2+) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.Communicated by: I.D. Hume  相似文献   

3.
4.
5.
6.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

7.
The K+-agitated (Kag) mutant of Paramecium caudatum shows prolonged backward swimming in K+-rich solution. To understand the regulation mechanisms of the ciliary motility in P. caudatum, we examined the membrane electrical properties of the Kag mutant. The duration of the backward swimming of the Kag in K+-rich solution was about 10 times longer than that of the wild type. In response to an injection of the outward current, the wild type produced an initial action potential and a subsequent membrane depolarization due to I-R potential drop, while the Kag exhibited repetitive action potentials during the depolarization. Under voltage-clamp conditions, the depolarization-activated transient inward current exhibited by the Kag was slightly smaller than that exhibited by the wild type. In response to an application of K+-rich solution, both the wild type and the Kag exhibited a depolarizing afterpotential representing the activation of the K+-induced Ca2+ conductance. The inactivation time course of the K+-induced Ca2+ conductance of Kag was about 10 times longer than that of the wild type. This difference corresponds well with the difference in behavioral responses between Kag and wild type to K+-rich solution. We conclude that the overreaction of the Kag mutant to the K+-rich solution is caused by slowing down of the inactivation of the K+-induced Ca2+ conductance.  相似文献   

8.
Supplementation with CaCl2·2H2O (50 mg l−1) or CuSO4·5H2O (10 mg l−1) improved mannitol production by Candida magnoliae by 14.5 and 18.6% (25 and 32 g/L), respectively. When used in combination, they acted synergistically: Ca2+ decreased the intracellular concentration of mannitol 30%, whereas Cu2+ increased the intracellular activity of mannitol dehydrogenase 1.6-times more than control. Ca2+ probably works by altering the permeability of cells to mannitol, whereas, Cu2+ increases the activity of an enzyme responsible for mannitol biosynthesis.  相似文献   

9.
10.
The non-selective slow vacuolar (SV) channel can dominate tonoplast conductance, making it necessary to tightly control its activity. Applying the patch-clamp technique to vacuoles from sugar beet (Beta vulgaris L.) taproots we studied the effect of divalent cations on the vacuolar side of the SV channel. Our results show that the SV channel has two independent binding sites for vacuolar divalent cations, (i) a less selective one, inside the channel pore, binding to which impedes channel conductance, and (ii) a Ca2+-selective one outside the membrane-spanning part of the channel protein, binding to which stabilizes the channels closed conformations. Vacuolar Ca2+ and Mg2+ almost indiscriminately blocked ion fluxes through the open channel pore, decreasing measured single-channel current amplitudes. This low-affinity block displays marked voltage dependence, characteristic of a permeable blocker. Vacuolar Ca2+—with a much higher affinity than Mg2+—slows down SV channel activation and shifts the voltage dependence to more (cytosol) positive potentials. A quantitative analysis results in a model that exactly describes the Ca2+-specific effects on the SV channel activation kinetics and voltage gating. According to this model, multiple (approximately three) divalent cations bind with a high affinity at the luminal interface of the membrane to the channel protein, favoring the occupancy of one of the SV channels closed states (C2). Transition to another closed state (C1) diminishes the effective number of bound cations, probably due to mutual repulsion, and channel opening is accompanied by a decrease of binding affinity. Hence, the open state (O) is destabilized with respect to the two closed states, C1 and C2, in the presence of Ca2+ at the vacuolar side. The specificity for Ca2+ compared to Mg2+ is explained in terms of different binding affinities for these cations. In this study we demonstrate that vacuolar Ca2+ is a crucial regulator to restrict SV channel activity to a physiologically meaningful range, which is less than 0.1% of maximum SV channel activity.Abbreviation SV Slow vacuolar  相似文献   

11.
12.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

13.
14.
Significant resolution improvement in 13C,13C-TOCSY spectra of uniformly deuterated and 13C, 15N-labeled protein and 13C,15N-labeled RNA samples is achieved by introduction of multiple-band-selective 13C-homodecoupling applied simultaneously with 1H- or 2H- and 15N-decoupling at all stages of multidimensional experiments including signal acquisition period. The application of single, double or triple band-selective 13C-decoupling in 2D-[13C,13C]-TOCSY experiments during acquisition strongly simplifies the homonuclear splitting pattern. The technical aspects of complex multiple-band homonuclear decoupling and hardware requirements are discussed. The use of this technique (i) facilitates the resonance assignment process as it reduces signal overlap in homonuclear 13C-spectra and (ii) possibly improves the signal-to-noise ratio through multiplet collapse. It can be applied in any 13C-detected experiment.  相似文献   

15.
The thermostabilities of Fe2+ ligation in rubredoxins (Rds) from the hyperthermophile Pyrococcus furiosus (Pf) and the mesophiles Clostridium pasteurianum (Cp) and Desulfovibrio vulgaris (Dv) were compared. Residue 44 forms an NH...S(Cys) hydrogen bond to one of the cysteine ligands to the [Fe(SCys)4] site, and substitutions at this location affect the redox properties of the [Fe(SCys)4] site. Both Pf Rd and Dv Rd have an alanine residue at position 44, whereas Cp Fd has a valine residue. Wild-type proteins were examined along with V44A and A44V exchange mutants of Cp and Pf Rds, respectively, in order to assess the effects of the residue at position 44 on the stability of the [Fe(SCys)4] site. Stability of iron ligation was measured by temperature-ramp and fixed-temperature time course experiments, monitoring iron release in both the absence and presence of more thiophilic metals (Zn2+, Cd2+) and over a range of pH values. The thermostability of the polypeptide fold was concomitantly measured by fluorescence, circular dichroism, and 1H NMR spectroscopies. The A44V mutation strongly lowered the stability of the [FeII(SCys)4] site in Pf Rd, whereas the converse V44A mutation of Cp Rd significantly raised the stability of the [FeII(SCys)4] site, but not to the levels measured for wild-type Dv Rd. The region around residue 44 is thus a significant contributor to stability of iron coordination in reduced Rds. This region, however, made only a minor contribution to the thermostability of the protein folding, which was found to be higher for hyperthermophilic versus mesophilic Rds, and largely independent of the residue at position 44. These results, together with our previous studies, show that localized charge density, solvent accessibility, and iron site/backbone interactions control the thermostability of the [Fe(SCys)4] site. The iron site thermostability does make a minor contribution to the overall Rd thermostability. From a mechanistic standpoint, we also found that attack of displacing ions (H+, Cd2+) on the Cys42 sulfur ligand at the [Fe(SCys)4] site occurs through the V8 side and not the V44 side of the iron site.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0525-4Abbreviations BPS bathophenanthroline sulfonate, sodium salt - Cp Rd (Pf Rd, Dv Rd) recombinant rubredoxin from Clostridium pasteurianum (Pyrococcus furiosus, Desulfovibrio vulgaris) - HEPES hydroxyethylpiperazineethanesulfonic acid - MES morpholinoethanesulfonic acid - Tris tris(hydroxymethyl)aminomethane - wt wild-type - ZnRd recombinant rubredoxin containing a [Zn(SCys)4] site  相似文献   

16.
13C-13C NOESY experiments were performed under long mixing time conditions on reduced human superoxide dismutase (32 kDa, 15N, 13C and 70% 2H labeled). 13C-13C couplings were successfully eliminated through post-processing of in-phase-anti-phase (IPAP) data. It appears that at mixing time m of 3.0 s the spin diffusion mechanism allows the detection of 96% of the two-bond correlations involving C and C. The interpretation was confirmed by simulations. This approach broadens the range of applicability of 13C-13C NOESY spectroscopy.  相似文献   

17.
A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca2+ and Mg2+ from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca2+ was observed in the stomach followed by subsequent Ca2+ fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca2+ along the intestinal tract resulting in a net assimilation of dietary Ca2+ of 28%. Similar handling of Ca2+ and Mg2+ was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg2+ assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg−1 fish body mass for Ca2+ and Mg2+, respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca2+ and Mg2+ were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca2+ and Mg2+ handling in the GI tract were similar to those observed for Na+ and K+ (but not Cl) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.  相似文献   

18.
Three types of transgenic tobacco plants were acquired by separate transformation or co-transformation of a vacuolar Na+/H+ antiporter gene, SeNHX1, and a betaine synthesis gene, BADH. When exposed to 200 mM NaCl, the dual gene-transformed plants displayed greater accumulation of betaine and Na+ than their wild-type counterparts. Photosynthetic rate and photosystem II activity in the transgenic plants were less affected by salt stress than wild-type plants. Transgenic plants exhibited a greater increase in osmotic pressure than wild-type plants when exposed to NaCl. More importantly, the dual gene transformed plants accumulated higher biomass than either of the single transgenic plants under salt stress. Taken together, these findings indicate that simultaneous transformation of BADH and SeNHX1 genes into tobacco plants can enable plants to accumulate betaine and Na+, thus conferring them more tolerance to salinity than either of the single gene transformed plants or wild-type tobacco plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

20.
Osteopontin (OPN) is a 33.7 kDa intrinsically disordered protein and a member of the SIBLING family of proteins. OPN is bearing a signal peptide for secretion into the extracellular space, where it exerts its main physiological function, the control of calcium biomineralization. It is often involved in tumorigenic processes influencing proliferation, migration and survival, as well as the adhesive properties of cancer cells via CD44 and integrin signaling pathways. Here we report the nearly complete NMR chemical shift assignment of recombinant human osteopontin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号