首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Protein phosphorylation by protein kinase C (PKC) has been implicated in the control of neurotransmitter release and various forms of synaptic plasticity. The PKC substrates responsible for phosphorylation-dependent changes in regulated exocytosis in vivo have not been identified. Munc18a is essential for neurotransmitter release by exocytosis and can be phosphorylated by PKC in vitro on Ser-306 and Ser-313. We demonstrate that it is phosphorylated on Ser-313 in response to phorbol ester treatment in adrenal chromaffin cells. Mutation of both phosphorylation sites to glutamate reduces its affinity for syntaxin and so acts as a phosphomimetic mutation. Unlike phorbol ester treatment, expression of Munc18 with this phosphomimetic mutation in PKC phosphorylation sites did not affect the number of exocytotic events. The mutant did, however, produce changes in single vesicle release kinetics, assayed by amperometry, which were identical to those caused by phorbol ester treatment. Furthermore, the effects of phorbol ester treatment on release kinetics were occluded in cells expressing phosphomimetic Munc18. These results suggest that the dynamics of vesicle release events during exocytosis are controlled by PKC directly through phosphorylation of Munc18 on Ser-313. Phosphorylation of Munc18 by PKC may provide a mechanism for the control of exocytosis and thereby synaptic plasticity.  相似文献   

2.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine protein kinase that requires association with a regulatory protein, p35 or p39, to form an active enzyme. Munc18-1 plays an essential role in membrane fusion, and its function is regulated by phosphorylation. We report here that both p35 and p39 were expressed in insulin-secreting beta-cells, where they exhibited individual subcellular distributions and associated with membranous organelles of different densities. Overexpression of Cdk5, p35, or p39 showed that Cdk5 and p39 augmented Ca(2+)-induced insulin exocytosis. Suppression of p39 and Cdk5, but not of p35, by antisense oligonucleotides selectively inhibited insulin exocytosis. Transient transfection of primary beta-cells with Munc18-1 templates mutated in potential Cdk5 or PKC phosphorylation sites, in combination with Cdk5 and the different Cdk5 activators, suggested that Cdk5/p39-promoted Ca(2+)-dependent insulin secretion from primary beta-cells by phosphorylating Munc18-1 at a biochemical step immediately prior to vesicle fusion.  相似文献   

3.
Myosin II contributes to fusion pore expansion during exocytosis   总被引:3,自引:0,他引:3  
During exocytosis, the fusion pore expands to allow release of neurotransmitters and hormones to the extracellular space. To understand the process of synaptic transmission, it is of outstanding importance to know the properties of the fusion pore and how these properties affect the release process. Many proteins have been implicated in vesicle fusion; however, there is little evidence for proteins involved in fusion pore expansion. Myosin II has been shown to participate in the transport of vesicles and, surprisingly, in the final phases of exocytosis, affecting the kinetics of catecholamine release in adrenal chromaffin cells as measured by amperometry. Here, we have studied single vesicle exocytosis in chromaffin cells overexpressing an unphosphorylatable form (T18AS19A RLC-GFP) of myosin II that produces an inactive protein by patch amperometry. This method allows direct determination of fusion pore expansion by measuring its conductance, whereas the release of catecholamines is recorded simultaneously by amperometry. Here we demonstrated that the fusion pore is of critical importance to control the release of catecholamines during single vesicle secretion in chromaffin cells. We proved that myosin II acts as a molecular motor on the fusion pore expansion by hindering its dilation when it lacks the phosphorylation sites.  相似文献   

4.
The SNARE proteins, syntaxin, SNAP-25, and VAMP, form part of the core machinery for membrane fusion during regulated exocytosis. Additional proteins are required to account for the speed, spatial restriction, and tight control of exocytosis and a key role is played by members of the Sec1/Munc18 family of proteins that have been implicated either in vesicle docking or fusion itself through their interactions with the corresponding syntaxin. Using amperometry to assay the kinetics of single vesicle fusion/release events in adrenal chromaffin cells, the effect of expression of syntaxin 1A mutants was examined. Overexpression of wild-type syntaxin or its cytoplasmic domain had no effect on the kinetics of release during single exocytotic events although the cytoplasmic domain reduced the frequency of exocytosis. In contrast, expression of either an open syntaxin 1A or the I233A mutant resulted in increased quantal size and a slowing of the kinetics of release. The wild-type and mutant syntaxins were overexpressed to a similar extent and the only common defect shown by the syntaxin 1A mutants was reduced binding to Munc18-1. These results are consistent with a role for Munc18-1 in controlling the late stages of exocytosis by binding to and limiting the availability of syntaxin in its open conformation. Modification of the Munc18-1/syntaxin 1A interaction would therefore be a key mechanism for the regulation of quantal size.  相似文献   

5.
J. Neurochem. (2012) 122, 1081-1091. ABSTRACT: Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α. Syntaxin 1 is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein involved in synaptic vesicle docking/fusion events, and X11α modulates amyloid precursor protein processing and β amyloid generation. In this study, we demonstrate that Dyrk1A interacts with and phosphorylates Munc18-1 at the Thr(479) residue. The phosphorylation of Munc18-1 at Thr(479) by Dyrk1A stimulated binding of Munc18-1 to Syntaxin 1 and X11α. Furthermore, the levels of phospho-Thr(479) -Munc18-1 were enhanced in the brains of transgenic mice over-expressing Dyrk1A protein, providing in vivo evidence of Munc18-1 phosphorylation by Dyrk1A. These results reveal a link between Munc18-1 and Dyrk1A in synaptic vesicle trafficking and amyloid precursor protein processing, suggesting that up-regulated Dyrk1A in Down's syndrome and Alzheimer's disease brains may contribute to some pathological features, including synaptic dysfunction and cognitive defect through abnormal phosphorylation of Munc18-1.  相似文献   

6.
Liu Y  Ding X  Wang D  Deng H  Feng M  Wang M  Yu X  Jiang K  Ward T  Aikhionbare F  Guo Z  Forte JG  Yao X 《FEBS letters》2007,581(22):4318-4324
Syntaxin and Munc18 are essential for regulated exocytosis in all eukaryotes. It was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by CDK5 phosphorylation, indicating that structural change disrupts the syntaxin-Munc18 interaction. Here, we show that this phosphorylation promotes the assembly of Munc18b-syntaxin 3-SNAP25 tripartite complex and membrane fusion machinery SNARE. Using siRNAs to screen for genes required for regulated epithelial secretion, we identified the requirements of CDK5 and Munc18b in cAMP-dependent gastric acid secretion. Biochemical characterization revealed that Munc18b bears a syntaxin 3-selective binding site located at its most C-terminal 53 amino acids. Significantly, the phosphorylation of Thr572 by CDK5 attenuates Munc18b-syntaxin 3 interaction and promotes formation of Munc18b-syntaxin 3-SNAP25 tripartite complex, leading to an assembly of functional Munc18b-syntaxin 3-SNAP25-VAMP2 membrane fusion machinery. Thus, our studies suggest a novel regulatory mechanism in which phosphorylation of Munc18b operates vesicle docking and fusion in regulated exocytosis.  相似文献   

7.
Munc18-1 (p67, nSec1, rbSec1), a neuron-specific 67kDa protein was independently identified as a syntaxin-binding protein, and as a component that co-purifies with, and regulates the kinase activity of cyclin dependent kinase (Cdk5). Gene knockout studies have demonstrated a role for Munc18-1 in synaptic vesicle docking and neurotransmitter release. Mice lacking Munc18-1 gene were synaptically silent, but the gene deletion did not prevent normal brain assembly, including the formation of layered structures, fiber pathways and morphologically defined synapses. Previous study has shown that Munc18-1 facilitates Cdk5 mediated phosphorylation of KSPXK domains of the neuronal cytoskeletal elements, suggesting that Munc18-1 may function in the regulation of cytoskeletal dynamics. Present study demonstrates the co-purification and co-localization of Munc18 with cytoskeletal elements and forms first step towards understanding the role for Munc18-1 in cytoskeletal dynamics. Conversely, the cytoskeletal proteins and Cdk5 co-purifies with Munc18-1 in a Munc18-1 immuno-affinity chromatography, suggesting a strong protein-protein interaction. Findings from immunofluorescence studies in PC12 cells have shown co-localization of Munc18-1 and Cdk5 with neurofilaments and microtubules. Further, immunohistochemical and immuno-electron microscopic studies of rat olfactory bulb also demonstrated co-localization of Munc18-1 and Cdk5 with cytoskeletal elements. Thus, the biochemical evidence of strong interaction between Munc18-1 with cytoskeletal proteins and morphological evidence of their (Munc18 and cytoskeletal elements) identical sub-cellular localization is suggestive of the possible role for Munc18-1 in cytoskeletal dynamics.  相似文献   

8.
How the Sec1/Munc18-syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c-wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus.  相似文献   

9.
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.  相似文献   

10.
The fungal metabolite, brefeldin A (BFA), is known to inhibit guanine nucleotide exchange on the ADP-ribosylating factors that are involved in vesicle membrane trafficking. Here, we investigated the action of BFA on Ca2+-regulated exocytosis in single rat adrenal chromaffin cells. Incubation of chromaffin cells with BFA (1 or 10 microM) for 2 h effectively disrupted the Golgi membranes but did not affect the pattern of catecholamine release triggered by high extracellular K+, which was monitored with carbon fiber amperometry along with cytosolic Ca2+ measurement. The BFA treatment, however, increased the mean quantal size of catecholamine-containing vesicles and the occurrence of amperometric events with a "foot" or "stand alone" signal (which reflects sluggish or incomplete dilation of the fusion pore). To examine whether BFA altered the Ca2+-dependence of exocytosis, we employed the whole-cell recording technique in conjunction with the capacitance measurement to measure exocytosis evoked from the entire cell during voltage-gated Ca2+ entry. Our results suggested that BFA treatment did not alter either the initial rate of capacitance increase or the total amount of capacitance increase. Therefore, in chromaffin cells, BFA treatment affects Ca2+-regulated exocytosis predominantly by increasing the quantal size and by slowing the fusion kinetics of some vesicles.  相似文献   

11.
SNAP receptor (SNARE) and Sec1/Munc18 (SM) proteins are required for all intracellular membrane fusion events. SNAREs are widely believed to drive the fusion process, but the function of SM proteins remains unclear. To shed light on this, we screened for dominant-negative mutants of yeast Sec1 by random mutagenesis of a GAL1-regulated SEC1 plasmid. Mutants were identified on the basis of galactose-inducible growth arrest and inhibition of invertase secretion. This effect of dominant-negative sec1 was suppressed by overexpression of the vesicle (v)-SNAREs, Snc1 and Snc2, but not the target (t)-SNAREs, Sec9 and Sso2. The mutations isolated in Sec1 clustered in a hotspot within domain 3a, with F361 mutated in four different mutants. To test if this region was generally involved in SM protein function, the F361-equivalent residue in mammalian Munc18-1 (Y337) was mutated. Overexpression of the Munc18-1 Y337L mutant in bovine chromaffin cells inhibited the release kinetics of individual exocytosis events. The Y337L mutation impaired binding of Munc18-1 to the neuronal SNARE complex, but did not affect its binary interaction with syntaxin1a. Taken together, these data suggest that domain 3a of SM proteins has a functionally important role in membrane fusion. Furthermore, this approach of screening for dominant-negative mutants in yeast may be useful for other conserved proteins, to identify functionally important domains in their mammalian homologs.  相似文献   

12.
13.
We studied the role of one of the synaptic proteins belonging to the SM-protein family, Munc18, in the process of exocytosis. For this purpose, we used microinjections of antibodies against protein Munc18 (anti- Munc18) into isolated chromaffin cells of the rat adrenal gland, with the aim of suppressing the function of this protein. Secretion of catecholamines was measured using carbon microelectrodes and an amperometric technique. Blocking of the function of Munc18 in the studied cells led to significant suppression of the process of secretion. In this case, the frequency of secretory events decreased, and the kinetic parameters of secretory peaks changed (their amplitude decreased, and duration of the decline phase increased). The obtained data allow us to conclude that Munc18 is one of the synaptic proteins responsible for calciumdependent exocytosis by chromaffin cells and that this protein can in a specific manner influence dimensions of the fusion pores.  相似文献   

14.
Sec1/Munc18 (SM) proteins are essential for membrane trafficking, but their molecular mechanism remains unclear. Using a single vesicle-vesicle content-mixing assay with reconstituted neuronal SNAREs, synaptotagmin-1, and complexin-1, we show that the neuronal SM protein Munc18a/nSec1 has no effect on the intrinsic kinetics of both spontaneous fusion and Ca2+-triggered fusion between vesicles that mimic synaptic vesicles and the plasma membrane. However, wild type Munc18a reduced vesicle association ∼50% when the vesicles bearing the t-SNAREs syntaxin-1A and SNAP-25 were preincubated with Munc18 for 30 min. Single molecule experiments with labeled SNAP-25 indicate that the reduction of vesicle association is a consequence of sequestration of syntaxin-1A by Munc18a and subsequent release of SNAP-25 (i.e. Munc18a captures syntaxin-1A via its high affinity interaction). Moreover, a phosphorylation mimic mutant of Munc18a with reduced affinity to syntaxin-1A results in less reduction of vesicle association. In summary, Munc18a does not directly affect fusion, although it has an effect on the t-SNARE complex, depending on the presence of other factors and experimental conditions. Our results suggest that Munc18a primarily acts at the prefusion stage.  相似文献   

15.
Catecholamine-containing small dense core granules (SDCGs, vesicular diameter of ~100 nm) are prominent in carotid glomus (chemosensory) cells and some neurons, but the release kinetics from individual SDCGs has not been studied in detail. In this study, we compared the amperometric signals from glomus cells with those from adrenal chromaffin cells, which also secrete catecholamine but via large dense core granules (LDCGs, vesicular diameter of ~200-250 nm). When exocytosis was triggered by whole-cell dialysis (which raised the concentration of intracellular Ca(2+) ([Ca(2+)](i)) to ~0.5 μmol/L), the proportion of the type of signal that represents a flickering fusion pore was 9-fold higher for glomus cells. Yet, at the same range of quantal size (Q, the total amount of catecholamine that can be released from a granule), the kinetics of every phase of the amperometric spike signals from glomus cells was faster. Our data indicate that the last phenomenon involved at least 2 mechanisms: (i) the granule matrix of glomus cells can supply a higher concentration of free catecholamine during exocytosis; (ii) a modest elevation of [Ca(2+)](i) triggers a form of rapid "kiss-and-run" exocytosis, which is very prevalent among glomus SDCGs and leads to incomplete release of their catecholamine content (and underestimation of their Q value).  相似文献   

16.
Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding.  相似文献   

17.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   

18.
Munc18-1, a SEC1/Munc18 protein and key regulatory protein in synaptic transmission, can either promote or inhibit SNARE complex assembly. Although the binary inhibitory interaction between Munc18-1 and closed syntaxin 1 is well described, the mechanism of how Munc18-1 stimulates membrane fusion remains elusive. Using a reconstituted assay that resolves vesicle docking, priming, clamping, and fusion during synaptic exocytosis, we show that helix 12 in domain 3a of Munc18-1 stimulates SNAREpin assembly and membrane fusion. A single point mutation (L348R) within helix 12 selectively abolishes VAMP2 binding and the stimulatory function of Munc18-1 in membrane fusion. In contrast, targeting a natural switch site (P335A) at the start of helix 12, which can result in an extended α-helical conformation, further accelerates lipid-mixing. Together with structural modeling, the data suggest that helix 12 provides a folding template for VAMP2, accelerating SNAREpin assembly and membrane fusion. Analogous SEC1/Munc18-SNARE interactions at other transport steps may provide a general mechanism to drive lipid bilayer merger. At the neuronal synapse, Munc18-1 may convert docked synaptic vesicles into a readily releasable pool.  相似文献   

19.
Although it is well established that exocytosis of neurotransmitters and hormones is highly regulated by numerous secretory proteins, such as SNARE proteins, there is an increasing appreciation of the importance of the chemophysical properties and organization of membrane lipids to various aspects of the exocytotic program. Based on amperometric recordings by carbon fiber microelectrodes, we show that deprivation of membrane cholesterol by methyl-β-cyclodextrin not only inhibited the extent of membrane depolarization-induced exocytosis, it also adversely affected the kinetics and quantal size of vesicle fusion in neuroendocrine PC12 cells. In addition, total internal fluorescence microscopy studies revealed that cholesterol depletion impaired vesicle docking and trafficking, which are believed to correlate with the dynamics of exocytosis. Furthermore, we found that free cholesterol is able to directly trigger vesicle fusion, albeit with less potency and slower kinetics as compared to membrane depolarization stimulation. These results underscore the versatile roles of cholesterol in facilitating exocytosis.  相似文献   

20.
Physiological regulation of Munc18/nSec1 phosphorylation on serine-313   总被引:6,自引:0,他引:6  
Increased protein phosphorylation enhances exocytosis in most secretory cell types, including neurones. However, the molecular mechanisms by which this occurs and the specific protein targets remain unclear. Munc18-1/nSec1 is essential for exocytosis in neurones, and is known to be phosphorylated by protein kinase C (PKC) in vitro at Ser-313. This phosphorylation has been shown to decrease its affinity for syntaxin, and to alter the kinetics of exocytosis in chromaffin cells. However, there are no data on the physiological regulation of Ser-313 phosphorylation. Using phospho-Ser-313-specific antisera, we demonstrate here that Ser-313 is phosphorylated in intact and permeabilized chromaffin cells in response to histamine and Ca2+ respectively. Furthermore, Ser-313 is rapidly and transiently phosphorylated in intact synaptosomes in response to depolarization by KCl treatment or by 4-aminopyridine, and by the metabotropic glutamate receptor agonist dihydroxyphenylglycine. PKC was identified as the kinase, and PP1 and PP2B as the phosphatases responsible for regulating Ser-313 phosphorylation. As phosphorylation of nSec1 on Ser-313 affects the rate of transmitter release in chromaffin cells, the demonstration here that this phosphorylation event occurs in neurones suggests that synaptic neurotransmitter release may be similarly regulated by nSec1 phosphorylation. Furthermore, such changes in release kinetics are associated with long-term potentiation and depression, thus implicating nSec1 phosphorylation as a potential regulatory mechanism underlying presynaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号