首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Night-time stomatal opening in C3 plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO2 resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO2 levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO2. After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation.  相似文献   

2.
Stomatal responses to humidity in air and helox   总被引:11,自引:5,他引:6  
Abstract. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO2 and water vapour added), which we termed 'helox'. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water-vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO2 concentration at the evaporating surfaces ( ci ), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant ci , suggesting heterogeneous (patchy) stomatal closure.  相似文献   

3.
Transport of gases into leaves   总被引:14,自引:10,他引:4  
Abstract. Transport of gases between the intercellular spaces of plant leaves and the surrounding air is analysed in terms of multicomponent collision processes through an isothermal, porous septum. Interaction of diffusing species with each other and with the pore walls is described using a modified Stefan–Maxwell equation and an equation relating the pressure gradient to the sum of the diffusive fluxes, weighted by their appropriate Knudsen diffusivities. Viscous How arising from an excess pressure within the leaf is also considered.
Equations are derived which describe the flux densities of water vapour and CO2 through the stomata. The analysis is general and is applicable to trace gases other than CO2. A simple conductance is defined for water vapour to relate the flux and mol fraction difference across the stomata, viz. Nw =− gw , δ xw / xa . A simple conductance cannot be defined for CO2 because the flux of water vapour has a significant influence on the CO2 gradient. The equation derived for the intercellular mol fraction of CO2 is in terms of the fluxes of CO2 and water vapour and represents a 'large-pore' ( d > μm) approximation which requires no information about stomalal geometry. Analogous equations are developed for transfer of gases through the leaf boundary layer. Sample calculations are presented to illustrate the effect of neglecting the interaction of water vapour and CO2 on the calculated intercellular and surface concentrations of CO2. Equations for computing water vapour and CO2 flux densities from leaf chamber measurements are also presented.  相似文献   

4.
Abstract. A portable apparatus has been constructed to measure simultaneously the quantum yield of CO2 assimilation, light absorption, chlorophyll fluorescence emission and water vapour exchange of attached intact leaves in the field. The core of the instrument is a light-integrating spherical leaf chamber which includes ports for a light source, photosynthetically active radiation sensor, fluorescence probes and gas inlet and outlet manifolds. Measurement of the quantum flux inside the empty chamber and with a leaf present allows determination of leaf absorptance. An open gas exchange system is employed using an infra-red analyser to measure leaf CO2 exchange. Using a DC white light source the quantum yield of CO2 assimilation based on absorbed light (φabs) may be determined rapidly in either ambient air or artificial gas mixtures. Inclusion of capacitance humidity probes into the gas inlet and outlet ports allows simultaneous determination of water vapour exchange and subsequent estimation of stomatal conductance to CO2 and intercellular CO2 concentration. Measurement of fluorescence emission by the sample leaf exposed to white light is achieved by a modulated fluorescence detection system. In addition to determination of the minimal, maximal and variable fluorescence levels, a further analysis allows the photochemical and non-photochemical components of fluorescence quenching, to be estimated. The theory and design of this apparatus is described in detail. The use of the apparatus in the field is demonstrated through a study of the photosynthetic performance of a maize and bean crop during the growing season and by analysis of the photosynthetic performance of crops subjected to nitrogen-stress and a herbicide treatment.  相似文献   

5.

A , carbon assimilation rate
ABA, abscisic acid
Ci , intercellular space CO2 concentration
g , leaf conductance
WUE, water use efficiency

Carbon dioxide and abscisic acid (ABA) are two major signals triggering stomatal closure. Their putative interaction in stomatal regulation was investigated in well-watered air-grown or double CO2-grown Arabidopsis thaliana plants, using gas exchange and epidermal strip experiments. With plants grown in normal air, a doubling of the CO2 concentration resulted in a rapid and transient drop in leaf conductance followed by recovery to the pre-treatment level after about two photoperiods. Despite the fact that plants placed in air or in double CO2 for 2 d exhibited similar levels of leaf conductance, their stomatal responses to an osmotic stress (0·16–0·24 MPa) were different. The decrease in leaf conductance in response to the osmotic stress was strongly enhanced at elevated CO2. Similarly, the drop in leaf conductance triggered by 1 μ M ABA applied at the root level was stronger at double CO2. Identical experiments were performed with plants fully grown at double CO2. Levels of leaf conductance and carbon assimilation rate measured at double CO2 were similar for air-grown and elevated CO2-grown plants. An enhanced response to ABA was still observed at high CO2 in pre-conditioned plants. It is concluded that: (i) in the absence of stress, elevated CO2 slightly affects leaf conductance in A. thaliana ; (ii) there is a strong interaction in stomatal responses to CO2 and ABA which is not modified by growth at elevated CO2.  相似文献   

6.
Leaf water potentials below threshold values result in reduced stomatal conductance (gs). Stomatal closure at low leaf water potentials may serve to protect against cavitation of xylem. Possible control of gs by leaf water potential or hydraulic conductance was tested by drying the rooting medium in four herbaceous annual species until gs was reduced and then lowering the [CO2] to determine whether gs and transpiration rate could be increased and leaf water potential decreased and whether hydraulic conductance was reduced at the resulting lower leaf water potential. In all species, low [CO2] could reverse the stomatal closure because of drying despite further reductions in leaf water potential, and the resulting lower leaf water potentials did not result in reductions in hydraulic conductance. The relative sensitivity of gs to internal [CO2] in the leaves of dry plants of each species averaged three to four times higher than in leaves of wet plants. Two species in which gs was reputed to be insensitive to [CO2] were examined to determine whether high leaf to air water vapor pressure differences (D) resulted in increased stomatal sensitivity to [CO2]. In both species, stomatal sensitivity to [CO2] was indeed negligible at low D, but increased with D, and low [CO2] partly or fully reversed closure caused by high D. In no case did low leaf water potential or low hydraulic conductance during drying of the air or the rooting medium prevent low [CO2] from increasing gs and transpiration rate.  相似文献   

7.
Abstract. A model of photosynthesis (PGEN) is presented. The model assumes that optimal use is made of the leaf nitrogen available for partitioning between the carboxylase and thylakoid components. This results in predictions of Rubisco and chlorophyll concentrations very similar to those measured elsewhere. A function is incorporated which represents the detrimental effects of negative leaf water potentials on the Calvin cycle, producing a quantitative and mechanistic trade-off between CO2 entering, and H2O leaving, the leaf. Thus, an optimal stomatal conductance and associated internal partial pressure of CO2 exists for any given set of environmental conditions. The model calculates this optimal state for the leaf, which is its output. The model was subjected to changes in the following parameters: soil water potential, irradiance, ambient CO2 partial pressure, leaf temperature, leaf-to-air vapour pressure deficit, wind speed, atmospheric pressure, leaf nitrogen content, root dry weight and leaf width. These perturbations resulted in changes in predicted optimal conductance which were very similar to what has been observed. In general, as the capacity of the leaf to fix CO2 increased, so did the predicted optimal conductance, with the internal partial pressure of CO2 being maintained close to 22Pa.  相似文献   

8.
1. Provenances of Castanea sativa from populations adapted to different climatic areas of Turkey were grown in a field trial in Italy. Carbon isotope discrimination (Δ) in leaf dry matter and in leaf soluble sugar, were measured, along with photosynthesis, stomatal conductance and mesophyll conductance, to study the variability of primary productivity and its ecological significance in European Chestnut.
2. Genetic variations were found in RuBP carboxylase, chlorophyll, leaf soluble protein and leaf thickness.
3. Carbon isotope discrimination (Δ) in leaf dry matter was greater in drought-adapted than in wet-adapted provenances. A similar variation of Δ was observed in leaf soluble carbohydrates either under watered or drought conditions. Possible environmental effects of variables such as vapour pressure difference, on the relationship between transpiration efficiency and carbon isotope discrimination are discussed, on the basis of short-term and long-term results.
4. Generally low values of Δ encountered among provenances were explained not only by low values of intercellular CO2 partial pressure but also by consistently low values of mesophyll conductance leading to reduced chloroplastic CO2 partial pressure. A decrease in mesophyll conductance was induced by water shortage. Co-ordination was found between stomatal and mesophyll conductance, with the drought-adapted provenances showing much higher mesophyll conductance than the wet-adapted provenances. Variations in mesophyll conductance were related to differences in leaf protein content.
5. Possible ecophysiological adaptive mechanisms are discussed taking into account stomatal sensitivity, modulation of photosynthetic capacity and water-use efficiency under drought conditions.  相似文献   

9.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

10.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

11.
Stomatal response to humidity: implications for transpiration   总被引:1,自引:1,他引:0  
Abstract. Transpiration rates from apple leaves are analysed in terms of the ratio of latent heat flux (λ E ) to leaf net radiation ( Q 1) and the climatological resistance ( ri ). Increases in stomatal resistance with increasing leaf to air vapour pressure gradient ( D ), described by an empirical model, are incorporated in the analysis. This humidity effect causes the proportion of energy dissipated as latent heat to fall as Q 1 increases, so that leaf transpiration rates in high energy environments are likely to be similar to those in lower energy environments. Boundary layer resistance ( r a) exerts an increasingly important effect on transpiration rates as Q 1 increases. At constant Q 1 stomatal closure in response to increasing D results in very small changes in leaf temperature ( T 1) across a wide range of ambient vapour pressure deficits (δ e ); r a is then the major factor determining T 1. The implications of these results are discussed.  相似文献   

12.
Rates of net photosynthesis (A), transpiration (E) and leaf conductance to water vapour transfer (gH2O) were measured on leaves of Lupinus angustifolius L. cv. Ritson's and L. cosentinii Guss. cv. Eregulla throughout development and on flag leaves of wheat ( Triticum aestivum L. cvs Gutha, Gamenya and Warigal) after full expansion. Plants were grown in large containers of soil, in a naturally-lit, temperature controlled glasshouse. Throughout most of their life, lupin leaves had higher photosynthetic rates and leaf conductances than found for wheat. During leaf ageing in lupins, photosynthesis and conductance changed proportionately such that leaf intercellular CO2 concentration was maintained relatively constant at about 200 ppm. Under continuously cloudy conditions, leaf conductance at midday of lupins and wheat was higher than at similar photon flux densities at other times of day on cloudless days. On cloudy days the relationship between gH2O and photon flux density in lupins was very different from that derived from diurnal measurements on clear days. The potentially low water use efficiency under cloud, evident as decreases in the A/gH2O ratio, was rarely realised in practise due to a reduction in leaf-to-air water vapour concentration difference on cloudy days. The possible reasons for the high conductance on cloudy days are discussed.  相似文献   

13.
Abstract: Long-term (14 days) carbon costs of N2 fixation were studied in pot trials. For this purpose the CO2 release from the root space of nodulated and non-nodulated (urea nourished) Vicia faba L. and Pisum sativum L. plants was compared and related to the amount of fixed or assimilated N. Additional measurements of shoot CO2 exchange and dry matter increment were carried out in order to calculate the overall carbon balance. The carbon costs for N2 fixation in Vicia faba 1. (2.87 mg C/mg NfiX) were higher than in Pisum sativum L. (2.03 mg C/mg Nfix). However, the better carbon efficiency in Pisum sativum 1. did not lead to a better growth performance compared to Vicia faba L. Vicia faba L. compensated for the carbon and energy expenditure by more intensive photosynthesis in the N2-fixing treatment. This was not the case with Pisum sativum L., where the carbon balance indicates that the carbon costs of N2 fixation restricted root growth. It is proposed that low carbon costs for N2 fixation indicate an adaptation to a critical carbon supply of roots and nodules, e.g., during the pod-filling of grain legumes.  相似文献   

14.
The interaction of CO2 enrichment and drought on water status and growth of pea plants was investigated. Pisum sativum L. (cv. Alaska) plants were grown from seeds in growth chambers using 350 and 675 μl I1 CO2, a photon flux density of 600 μmol M-2 S-1, a 16 h photoperiod and a temperature regime of 20/14°C. The drought treatment was started at the beginning of branch initiation and lasted for 9 or 11 days. The water status of the plants was monitored daily by measuring total leaf water potential and stomatal conductance. The total leaf water potential of well-watered plants was not affected by the CO2 level. Under draughting conditions total leaf water potential decreased, with a slower decrease under the high CO2 regime, due, at least in part, to reduced stomatal conductance. Upon rewatering, total leaf water potential and stomatal conductance recovered within one day. High CO2 counteracted the reduction in height and, to some extent, leaf area that developed in low CO2 unwatered plants. Additional CO2 had no effect on branch number and did not prevent the complete inhibition of branch development that resulted from drought stress. Removing the drought conditions resulted in a rapid recovery of the internal water status and also a rapid recovery of most, but not all, plant growth parameters.  相似文献   

15.
Responses of apple leaf stomata to environmental factors   总被引:5,自引:4,他引:1  
Abstract. Stomatal conductances ( g s) were measured on the leaves of 3–4 year old Golden Delicious trees and of seedlings of two other cultivars. Measurements were made on container grown trees in the field with a diffusion porometer in 1975 and 1976, and in controlled conditions in a leaf chamber in the laboratory in 1976. Stomatal densities in the Golden Delicious leaves were assessed from scanning electron micrographs. Stomatal density on extension shoot leaves was higher than on other leaf types after June.
The response to irradiance shown by both the porometer and the leaf chamber results could be described by a rectangular hyperbola: where g max is maximum conductance and β indicates the sensitivity of gs to photon influx density ( Q p). The values of β were in the range 60–90 μmol m−2 s−1.
There was no evidence that apple stomata are sensitive to temperature per se, but g s was reduced by increasing leaf to air vapour pressure deficits ( D ). There was a linear relationship between g s and D which was not attributable to feed-back to leaf water potential (ψL) as the latter did not affect g s until a threshold of about −2.0 to −2.5 MPa was reached. Conductance generally declined with increasing ambient CO2 concentration.  相似文献   

16.
The variations in δ 13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing p i/ p a during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased p i/ p a but other possible explanations are also discussed. Interestingly, the variations in δ 13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ 13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.  相似文献   

17.
We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured δ 13C values of ecosystem-respired CO2 ( δ R). The modelled δ R values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled δ R values. Our results indicated that δ R is a good proxy for canopy-level C c/ C a and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.  相似文献   

18.
Responses of apple leaf stomata: a model for single leaves and a whole tree   总被引:5,自引:4,他引:1  
Abstract. An empirical model of stomatal response to environmental factors was developed from measurements of stomatal conductance ( g s) made in a leaf chamber under controlled conditions. Results presented in a companion paper (Warrit, Landsberg & Thorpe, 1980) indicated that the model could be written in terms of only two factors, photon flux density ( Q p) and leaf to air vapour pressure gradient ( D ). The response of Q p was hyperbolic and that to D linear; combining these the equation of the model is where g r is a reference conductance, α is the slope of the response to D and β indicates the sensitivity of g s response to Q p. Values of α were 0.20 and 0.30 kPa−1 in June and August; the corresponding values of β were 59 and 79 μmol m−2 s−1.
The model was tested against mean values of g s obtained with a porometer in the field, using environmental measurements as inputs. Correspondence between measured and calculated values was good. Transpiration rates were calculated from the Penman-Monteith equation, with stomatal resistance values calculated from the model, and compared with gravimetric measurements of tree water use. It was shown that transpiration could be calculated with acceptable accuracy. The effects of variations in stomatal resistance on transpiration rates under a range of conditions were explored using the model and the Penman- Monteith equation.  相似文献   

19.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

20.
Differential effects of simazine (2-chloro-4,6-bis(ethylamino)- s -triazine) on the physiology of two Populus clones were investigated in a greenhouse study. Additions of 5 mg/pot simazine to young plants had no deleterious morphological or physiological effects on clone NC 5328 ( P. x euramericana cv. I 45/51; Section Aigeiros), but reduced the rate of CO2 fixation, increased CO2 compensation concentrations and lowered the specific leaf weight of clone NE 388 ( P. maximowiczü x P. trichocarpa cv. Kingston; section Tacamahaca). Abaxial leaf conductance to water vapor was not affected in NE 388. Deleterious effects of simazine on NE 388 were detected ca 48 h after exposure of plants to simazine and generally became more pronounced thereafter. Visual symptoms of injury were evident at ca 2 weeks after simazine application.
Toxic responses to simazine in clone NE 388 varied in different portions of the crown. Inhibition of photosynthesis and increased CO2 compensation concentrations were more pronounced in the region of recently matured leaves, but were somewhat less in the region of expanding leaves. Older mature leaves in the lower crown region showed no visual symptoms of injury and the rate of photosynthesis and CO2 compensation concentrations were largely unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号