首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calcium ions can trigger an emission of light from Veretillum cynomorium lumisomes (bioluminescent vesicles) under conditions where they are not lysed. This process does not require a metabolically-linked source of energy, but is dependent upon the nature of the ions present inside and outside the vesicles. The Ca2+-triggered bioluminescence is stimulated by an asymmetrical distribution of cations or anions. Either high internal sodium or high external chloride is required for the maximal effect. When sodium is present outside the structure and potassium inside, the slow inward diffusion of calcium is decreased. Unbalanced diffusion of internal cations also stimulates the bioluminescence, suggesting control of the calcium influx by an electrochemical gradient. It is assumed that rapid outward diffusion of sodium or inward diffusion of chloride generates an electrical potential difference (inside negative) which drives the Ca2+-influx. With purified lumisomes it has been shown that Ca2+-triggered bioluminescence and calcium uptake (presumably net uptake) were correlated. In two instances uptake of the lipophilic cation dibenzyldimethylammonium has given direct evidence for the existence of a potential difference. With NaCl-loaded vesicles, it has not been possible to demonstrate an uptake of lipophilic cations but experiments with 22Na and 42K indicated a higher rate of sodium efflux, in accord with the proposed hypothesis.  相似文献   

2.
Renilla lumisomes produce a bioluminescent flash when the vesicles are disrupted with hypotonic solutions containing Ca2+. A flash is also observed in the presence of Ca2+ using isotonic solutions of monovalent cations under the following conditions: When the Na+K+ ratio inside the lumisomal membrane is high and when this ratio outside the membrane is low. We suggest that Na+ may be the counter ion for Ca2+ transport. Na+, when outside the membrane, inhibits Ca2+-triggered luminescence suggesting that Na+ blocks Ca2+ channels. Ca2+ uptake into the lumisomal membrane, as measured by bioluminescence, is very rapid in the presence of the ionophore A23187. X537A is much less effective. The Ca2+ triggered bioluminescence flash observed with lumisomes provides a rapid and sensitive assay for ionophores that are specific for divalent cations such as Ca2+.  相似文献   

3.
Calcium currents in squid giant axon.   总被引:1,自引:0,他引:1  
Voltage-clamp experiments were carried out on intracellularly perfused squid giant axons in a Na-free solution of 100 mM CaCl2+sucrose. The internal solution was 25 mM CsF+sucrose or 100 mM RbF+50mM tetraethylammonium chloride+sucrose. Depolarizing voltage clamp steps produced small inward currents; at large depolarizations the inward current reversed into an outward current. Tetrodotoxin completely blocked the inward current and part of the outward current. No inward current was seen with 100 mM MgCl2+sucrose as internal solution. It is concluded that the inward current is carried by Ca ions moving through the sodium channel. The reversal potential of the tetrodotoxin-sensitive current was +54mV with 25 mM CsF+sucrose inside and +10 mV with 100 mM RbF+50 mM tetraethylammonium chloride+sucrose inside. From the reversal potentials measured with varying external and internal solutions the relative permeabilities of the sodium channel for Ca, Cs and Na were calculated by means of the constant field equations. The results of the voltage-clamp experiments are compared with measurements of the Ca entry in intact axons.  相似文献   

4.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   

5.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

6.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

7.
Renilla lumisomes are membrane-bounded bioluminescent vesicles which produce light when the lumisomal membrane is made permeable to Ca2+. During studies of Ca2+ transport we found that lumisomes can be made permeable to Ca2+ by establishing a Na+ gradient with the higher Na+ concentration being on the inside of the lumisomal membrane. No other cation will substitute for Na+ on the inside but any of several monovalent cations can be used to maintain electroneutrality external to the lumisomes. This Na+ gradient dependent Ca2+ transport appears not to involve active transport and occurs on a millisecond time scale suggesting that it is rapid enough to account for the onset of bioluminescence in Renilla.  相似文献   

8.
When Selenomonas ruminantium HD4 was grown in a chemostat, maximal succinate production and the highest molar growth yield values were both observed at a dilution rate of roughly 0.2 h-1. To determine the possible relationship between succinate efflux and high molar growth yields, the generation of a membrane potential by succinate efflux was studied in whole cells and vesicles (inside-out and right-side-out) prepared from S. ruminantium. Washed whole cells took up succinate in the absence of an exogenous energy supply; uptake was completely abolished by brief treatment with dinitrophenol or with nigericin and valinomycin. High levels of sodium ions (with respect to the intracellular sodium concentration in the assay buffer had a stimulatory effect on succinate uptake. When succinate was added to inside-out vesicles, a membrane potential (inside positive) was generated, as indicated by fluorescence quenching of the anionic lipophilic dye Oxonol V. Fluorescence quenching was sensitive to uncoupling by gramicidin D but only partially sensitive to the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In right-side-out vesicles, succinate uptake could be driven by an artificially imposed sodium gradient but not by a potassium diffusion potential; imposition of both a sodium gradient and potassium diffusion potential resulted in improved succinate uptake. The generation of a membrane potential (inside negative) upon succinate efflux was demonstrated directly in right-side-out vesicles when succinate-loaded vesicles were diluted into succinate-free buffer, and the lipophilic cationic probe tetraphenylphosphonium accumulated in the vesicles. Results indicate that an electrogenic succinate-sodium symporter is present in S. ruminantium. Transport of succinate out of the cell via the symporter might be responsible for the high molar growth yields obtained by this organism when it is grown at dilution rates where maximal succinate production occurs.  相似文献   

9.
We studied monovalent permeability of Ca2+ release-activated Ca2+ channels (ICRAC) in Jurkat T lymphocytes following depletion of calcium stores. When external free Ca2+ ([Ca2+]o) was reduced to micromolar levels in the absence of Mg2+, the inward current transiently decreased and then increased approximately sixfold, accompanied by visibly enhanced current noise. The monovalent currents showed a characteristically slow deactivation (tau = 3.8 and 21.6 s). The extent of Na+ current deactivation correlated with the instantaneous Ca2+ current upon readdition of [Ca2+]o. No conductance increase was seen when [Ca2+]o was reduced before activation of ICRAC. With Na+ outside and Cs+ inside, the current rectified inwardly without apparent reversal below 40 mV. The sequence of conductance determined from the inward current at -80 mV was Na+ > Li+ = K+ > Rb+ >> Cs+. Unitary inward conductance of the Na+ current was 2.6 pS, estimated from the ratios delta sigma2/delta Imean at different voltages. External Ca2+ blocked the Na+ current reversibly with an IC50 value of 4 microM. Na+ currents were also blocked by 3 mM Mg2+ or 10 microM La3+. We conclude that ICRAC channels become permeable to monovalent cations at low levels of external divalent ions. In contrast to voltage-activated Ca2+ channels, the monovalent conductance is highly selective for Na+ over Cs+. Na+ currents through ICRAC channels provide a means to study channel characteristics in an amplified current model.  相似文献   

10.
We have applied our recently developed approach for quantitative generation and estimation of membrane potential differences (Berteloot, A. (1986) Biochim. Biophys. Acta 857, 180-188) to the reevaluation of glutamic acid transport rheogenicity in rabbit jejunal brush-border membrane vesicles. Membrane diffusion-potentials were created by altering iodide concentrations in the intra- and extravesicular compartments while keeping isosmolarity, isotonicity and ionic strength constant by chloride replacement. The known value of ion permeabilities relative to sodium in this preparation also allows calculation of membrane potential differences using the Goldman-Hodgkin-Katz equation. This strategy appears superior to more classical methods involving ionophore-induced membrane diffusion-potentials of protons or potassium as both cations have been shown to participate in the transport mechanism. In this paper, we demonstrate that this approach is perfectly suitable for the investigation of membrane potential dependency of glutamic acid transport as our results showed that chloride replacement by iodide did not affect uptake in vesicles with membrane potential clamped to zero by gramicidin D (sodium conditions) or by gramicidin D plus valimonycin (sodium + potassium conditions). The method thus allows to dissociate membrane potential effects from possible effects that might be introduced by altering the anion species. In these conditions, our studies clearly demonstrate that glutamic acid uptake, whether analyzed over a 1 min time scale or under initial rate conditions, was sensitive to membrane potential differences. However, our results also show that the electrogenicity of the transport system varied depending upon the intravesicular presence or absence of potassium, its presence stimulating the membrane potential dependency of uptake. This effect is modulated by the internal pH and it is concluded that inside H+ and K+ are not equivalent as countertransported cations. The external pH also seems to modulate the response to potential by acting on the fully loaded form(s) of the transporter. The possibility that outside H+ competes for (an) external Na+ binding site(s) and/or precludes the attachment of (an) extra sodium ion(s) should be considered.  相似文献   

11.
J Mas-Oliva 《Cell calcium》1982,3(2):113-129
A reconstitution procedure for a cardiac sarcolemmal enriched fraction is described. In the reconstituted cardiac sarcolemmal inside-out vesicles, a difference in calcium transport and (Ca2+ + Mg2+)-ATPase activity was found depending on the side of the membrane at which sodium and potassium were placed. Having inhibited the (Na+ + K+)- ATPase activity with ouabain, the active transport of calcium was increased when potassium was located outside and sodium inside the reconstituted vesicles. Nevertheless, this activity was maximal having potassium present on both sides. During calcium transport it was also shown that 86Rb moves opposite to calcium. When the experiment was carried out having 22Na located at the inside, there was no movement of this cation despite the low calcium transport observed. The present study supports the possibility of potassium having a stimulatory effect upon the sarcolemmal (Ca2+ + Mg2+)-ATPase activity and suggests the existence of a Ca2+, K+ co-transport carried out by this enzyme.  相似文献   

12.
Transport by the synthetic cyclic peptide ionophore CYCLEX-2E (Deber, C.M. Young, M.E.M., and Tom-Kun, J. (1980) Biochemistry 19, 6194-6198), which in contrast to Ca2+ ionophore A23187 contains no ionizable protons, has been studied with respect to Ca2+ and Na+ transport, and the involvement of exchanged, or counter-transported ions during the transport process. CYCLEX-2E was found to equilibrate Na+ and Ca2+ gradients across phospholipid vesicle membranes. Experiments using the indicator dye Arsenazo III established that calcium ions were indeed reaching the aqueous intravesicular compartments. Absence of metal cations in the external buffer slowed, but did not eliminate, the efflux of Ca2+ from phosphatidylcholine vesicles. As an example of its activity in a biological membrane, CYCLEX-2E was shown to be capable of producing Ca2+ efflux from sarcoplasmic reticulum vesicles which has been loaded with Ca2+ in an ATP-dependent manner. The overall results suggest that in transport by synthetic peptide ionophores typified by CYCLEX-2E, electroneutrality is achieved either through (a) peptide-mediated compensating (but not coupled) fluxes of other cations, or where this is not an option, by (b) transmembrane diffusion of permeant ions such as H+, OH-, or Cl-.  相似文献   

13.
Investigations of corneal endothelium were made to resolve the apparent contradiction of the presence of sodium/bicarbonate cotransporter (NBC) in fresh and cultured cells and NBC's reported absence in isolated plasma membrane vesicles. Gradient-driven ion fluxes into the vesicles were measured. Short-term incubations (0-30 s) showed the presence of a bicarbonate-dependent inward sodium flux (BDSF), which was active when the insides of the vesicles were preloaded with chloride ions. The BDSF was absent if chloride was present only externally to the vesicles. Chloride at concentrations between 30 and 40 mM inside the vesicle had its maximum effect on BDSF. Other anions (acetate, thiocyanate, or gluconate) inside the vesicles did not mimic the chloride effect. Associated with the net inward sodium flux was a net inward bicarbonate flux. Hill plots of sodium influx with respect to external bicarbonate concentrations indicated that the stoichiometry of the net transfer was 1.7 +/- 0.2 (mean +/- standard error, n = 5) bicarbonate ions for each sodium ion transported. There was no net chloride flux found across the membrane vesicles. The finding of a novel chloride-activated NBC activity fully resolves the apparent contradiction between whole-cell and membrane vesicle preparations.  相似文献   

14.
Phosphorylation of the ATPase dependent on Na+ and K+ is promoted through the synergistic action of cations on both sides of the membrane. This phenomenon has been observed in plasma membrane vesicles isolated from sheep-kidney outer medulla which accept ATP from the outside surface (inside-out) and which are tight for sodium ions. In these inside-out vesicles phosphorylating capacity is low even in the presence of 100 mM extravesicular sodium chloride as is turnover of the enzyme. The level of the phosphoenzyme and the transient release of inorganic phosphate from the phosphoenzyme increases several-fold when sodium chloride is allowed to equilibrate over the membrane, 25 mM intravesicular NaCl is necessary to obtain the half-maximum level of the phosphoenzyme. This result shows that intravesicular (= extracellular) low affinity sites are involved in the phosphorylation. Intravesicular potassium ions modify the activating action of Na+ on the phosphorylation by increasing the steady state of the phosphoenzyme at low intravesicular sodium ion concentrations. This suggests that Na+ and K+ compete with each other for the intravesicular cation-binding site.  相似文献   

15.
The ability of the divalent cations calcium, magnesium, and barium to permeate through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions and by measuring their ability to block current carried by sodium when presented on the cytoplasmic or extracellular side of the channel. Current carried by divalent cations in the absence of monovalent cations showed the typical rectification pattern observed from these channels under physiological conditions (an exponential increase in current at both positive and negative voltages). With calcium as the reference ion, the relative permeabilities were Ca > Ba > Mg, and the chord conductance ratios at +50 mV were in the order of Ca approximately Mg > Ba. With external sodium as the reference ion, the relative permeabilities were Ca > Mg > Ba > Na with chord conductance ratios at +30 mV in the order of Na >> Ca = Mg > Ba. The ability of divalent cations presented on the intracellular side to block the sodium current was in the order Ca > Mg > Ba at +30 mV and Ca > Ba > Mg at -30 mV. Block by external divalent cations was also investigated. The current-voltage relations showed block by internal divalent cations reveal no anomalous mole fraction behavior, suggesting little ion-ion interaction within the pore. An Eyring rate theory model with two barriers and a single binding site is sufficient to explain both these observations and those for monovalent cations, predicting a single-channel conductance under physiological conditions of 2 pS and an inward current at -30 mV carried by 82% Na, 5% Mg, and 13% Ca.  相似文献   

16.
The effects of monovalent cations on calcium uptake by fragmented sarcoplasmic reticulum have been clarified. Homogenization of muscle tissue in salt-containing solutions leads to contamination of this subcellular fraction with actomyosin and mitochondrial membranes. When, in addition, inorganic cations are contributed by the microsomal suspension and in association with nucleotide triphosphate substrates there is an apparent inhibition of the calcium transport system by potassium and other cations. However, when purified preparations were obtained after homogenization in sucrose medium followed by centrifugation on a sucrose density gradient in a zonal rotor, calcium uptake and the associated adenosine triphosphatase activity were considerably activated by potassium and other univalent cations. When plotted against the log of the free calcium concentration there was only a slight increase in calcium uptake and ATPase activity in the absence of potassium ions but sigmoid-shaped curves were obtained in 100 mM K+ with half-maximal stimulation occurring at 2 muM Ca2+ for both calcium uptake and ATPase activity. The augmentation in calcium uptake was not due to an ionic strength effect as Tris cation at pH 6.6 was shown to be inactive in this respect. Other monovalent cations were effective in the order K+ greater than Na+ greater than NH4+=Rb+=Cs+ greater than Li+ with half-maximal stimulation in 11 mM K+, 16 mM Na+, 25 mM NH4+, Rb+, and Cs+ and in 50 mM Li+. There was nos synergistic action between K+ AND Na+ ions and both calcium uptak and associated ATPase were insensitive to ouabain. Thallous ions stimulate many K+-requiring enzymes and at one-tenth the concentration were nearly as effective as K+ ions in promoting calcium uptake. The ratio of Ca2+ ions transported to P1 released remained unchanged at 2 after addition of K+ ions indicating an effect on the rate of calcium uptake rather than an increased efficiency of uptake. In support of this it was found that during the stimulation of calcium uptake by Na+ ions there was a reduction in the steady state concentration of phosphorylated intermediate formed from [gamma-32P]ATP. It is considered that there is a physiological requirement for potassium ions in the relaxation process.  相似文献   

17.
Uptake of L-lactate into rabbit jejunal brush-border-membrane vesicles prepared by a Ca2+-precipitation procedure was studied by a rapid filtration technique with L-[14C]-lactate as tracer. Transport of L-lactate into an intravesicular (osmotically reactive) space could be established. An inwardly directed NaCl gradient (outside 21 mM/inside 0mM) stimulated the uptake of L-lactate at 15 s 2-4-fold compared with that observed with an equal KCl gradient. A transient accumulation of L-lactate inside the vesicles (overshoot) was observed in the presence of an NaCl gradient. Gradients of LiCl, RbCl, CsCl or choline chloride were not able to replace NaCl in the stimulation of L-lactate uptake. L-Lactate uptake was saturable only in the presence of Na+. D-Lactate, DL-thiolactate (2-DL-mercaptopropionate), pyruvate and propionate inhibited the Na+-stimulated L-lactate uptake; D-lactate, thiolactate and pyruvate provoked trans-stimulation of L-lactate uptake. Artificially imposed diffusion potentials (inside negative) did not exert any effect on the Na+-dependent L-lactate uptake. The results are consistent with the existence of an electroneutral Na+/L-lactate co-transport system in the brush border of rabbit small intestine.  相似文献   

18.
The uptake of citrate by renal brush-border vesicles, prepared according to the method of Vannier, occurs by Na+-linked cotransport. It is 'positive rheogenic', i.e., stimulated by an (inside) negative, and inhibited by an (inside) positive electrical potential. The question arises whether, besides Na+, other ions (e.g., K+ and H+) participate in the cotransport. As to K+, neither an inward nor an outward directed K+ gradient has a significant effect on the citrate movement, but at equal concentrations of K+ inside and outside, equilibrium exchange of citrate, and to a smaller extent, the Na+-linked net uptake of citrate, are significantly stimulated. This observation is consistent with a hypothetical model in which K+ acts by accelerating both the empty and the fully loaded translocator. As to H+, citrate uptake is also stimulated by decreasing extravesicular pH, an effect previously attributed to protonization of the citrate anion in the assumption that the resulting secondary citrate anion is more acceptable to the translocator site. It was found, however, that the pH effect is still apparent if the concentration of the secondary citrate is kept constant by adjusting the total citrate concentration. This is taken as an argument against the above assumption and as being consistent with H+-linked cotransport. After the overshoot peak citrate exits slowly, and even after several hours does not attain equilibrium distribution, presumably owing to trapping by vesicular calcium.  相似文献   

19.
Effects of anions and membrane potential on the reconstituted proton pump from chromaffin granules were investigated. When acetate was present inside of the vesicles, ATP-dependent proton uptake was absolutely dependent on external chloride. Without external chloride, however, substantial proton uptake was observed when chloride or sulfate was present inside of the vesicles. Inside negative membrane potential drove ATP-dependent proton uptake regardless of the anion species present inside or outside of the vesicles. It is concluded that the internal anion binding site and membrane potential regulate the proton pumping activity of the ATPase.  相似文献   

20.
The effects of intra- and extravesicular calcium and magnesium ions on the hydrolysis of the phosphoenzyme (EP) intermediate formed in the reaction of Ca2+,Mg2+-dependent ATPase of the sarcoplasmic reticulum were investigated. The rate constants of EP hydrolysis were measured under conditions that allowed a single turnover of ATP hydrolysis to minimize the increase in calcium concentration inside the vesicles. The EP formed during a single turnover was hydrolyzed biphasically and could be resolved into fast- and slow-decomposing components. When free Mg2+ outside the vesicles was chelated by adding excess EDTA, EP could also be kinetically resolved into two components; EDTA-sensitive EP, which could be quickly decomposed by adding EDTA, and EDTA-insensitive EP, which could be prevented from decomposing by adding EDTA. The amount of EDTA-sensitive EP decreased rapidly during the initial phase of the reaction, while that of EDTA-insensitive EP decreased slowly with the same rate constant as that of the slow-decomposing EP. These results showed that the biphasic time course of EP hydrolysis was caused by the formation of EDTA-sensitive and -insensitive EP during the reaction. The time course of EP hydrolysis could be quantitatively analyzed in terms of the following reaction mechanism. (formula; see text) The decomposition of EDTA-insensitive EP required Mg2+ outside the vesicles and was competitively inhibited by extravesicular Ca2+. The decomposition of EDTA-sensitive EP was inhibited by Ca2+ inside the vesicles but not by external Ca2+. The linear relationships between the inverse of the rate constants of EP decomposition during the initial phase and the intravesicular CaCl2 concentrations suggested that decomposition of EDTA-sensitive EP was inhibited by the binding of 1 mol of intravesicular Ca2+ to 1 mol of EP. Furthermore, Mg2+ inside the vesicles scarcely affected the inhibition of EP hydrolysis by intravesicular Ca2+. These results suggested that magnesium ions are not counter-transported during the active transport of calcium by SR vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号