首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme unique to lysine biosynthesis in bacteria and higher plants, has been purified to homogeneity from etiolated pea (Pisum sativum) seedlings using a combination of conventional and affinity chromatographic steps. This is the first report on a homogeneous preparation of native dihydrodipicolinate synthase from a plant source. The pea dihydrodipicolinate synthase has an apparent molecular weight of 127,000 and is composed of three identical subunits of 43,000 as determined by gel filtration and cross-linking experiments. The trimeric quaternary structure resembles the trimeric structure of other aldolases, such as 2-keto-3-deoxy-6-phosphogluconic acid aldolase, which catalyze similar aldol condensations. The amino acid compositions of dihydrodipicolinate synthase from pea and Escherichia coli are similar, the most significant difference concerns the methionine content: dihydrodipicolinate synthase from pea contains 22 moles of methionine residue per mole of native protein, contrary to the E. coli enzyme, which does not contain this amino acid at all. Dihydrodipicolinate synthase from pea is highly specific for the substrates pyruvate and l-aspartate-β-semialdehyde; it follows Michaelis-Menten kinetics for both substrates. The pyruvate and l-aspartate-β-semialdehyde have Michaelis constant values of 1.70 and 0.40 millimolar, respectively. l-Lysine, S-(2-aminoethyl)-l-cysteine, and l-α-(2-aminoethoxyvinyl)glycine are strong allosteric inhibitors of the enzyme with 50% inhibitory values of 20, 160, and 155 millimolar, respectively. The inhibition by l-lysine and l-α-(2-aminoethoxyvinyl)glycine is noncompetitive towards l-aspartate-β-semialdehyde, whereas S-(2-aminoethyl)-l-cysteine inhibits dihydrodipicolinate synthase competitively with respect to l-aspartate-β-semialdehyde. Furthermore, the addition of (2R,3S,6S)-2,6-diamino-3-hydroxy-heptandioic acid (1.2 millimolar) and (2S,6R/S)-2,6-diamino-6-phosphono-hexanic acid (1.2 millimolar) activates dihydrodipicolinate synthase from pea by a factor of 1.4 and 1.2, respectively. This is the first reported activation process found for dihydrodipicolinate synthase.  相似文献   

2.
The analysis of the urine contents can be informative of physiological homoeostasis, and it has been speculated that the levels of urinary d-serine (d-ser) could inform about neurological and renal disorders. By analysing the levels of urinary d-ser using a d-ser dehydratase (DSD) enzyme, Ito et al. (Biosci. Rep.(2021) 41, BSR20210260) have described abundant levels of l-erythro-β-hydroxyasparagine (l-β-EHAsn), a non-proteogenic amino acid which is also a newly described substrate for DSD. The data presented support the endogenous production l-β-EHAsn, with its concentration significantly correlating with the concentration of creatinine in urine. Taken together, these results could raise speculations that l-β-EHAsn might have unexplored important biological roles. It has been demonstrated that l-β-EHAsn also inhibits serine racemase with Ki values (40 μM) similar to its concentration in urine (50 μM). Given that serine racemase is the enzyme involved in the synthesis of d-ser, and l-β-EHAsn is also a substrate for DSD, further investigations could verify if this amino acid would be involved in the metabolic regulation of pathways involving d-ser.  相似文献   

3.
Intraperitoneal administration of β-N-oxalyl-l-αβ-diaminopropionic acid, the neurotoxin from Lathyrus sativus, to 12-day-old rats causes typical convulsions within 10min. There is a striking accumulation of glutamine in the brain, and chronic ammonia toxicity is indicated. There are no changes in the amounts of urea, aspartic acid and glutamic acid in the brain. Adult rats, even when injected with a dose of excess of β-N-oxalyl-l-αβ-diaminopropionic acid, do not develop symptoms, and there are no changes in the amounts of glutamine or ammonia in the brain. A significant concentration of β-N-oxalyl-l-αβ-diaminopropionic acid can be detected in the brain of the young rat but not in that of the adult animal. It is concluded that β-N-oxalyl-l-αβ-diaminopropionic acid interferes with the ammonia-generating or -fixing mechanisms in the brain and leads to chronic ammonia toxicity.  相似文献   

4.
An enzyme catalyzing the formation of δ-aminolevulinic acid by transamination of γ,δ-dioxovaleric acid with l-α-alanine, l-glutamic acid, or l-phenylalanine has been detected in extracts of Chlorella vulgaris. The activity of this enzyme does not appear to parallel changes in chlorophyll content in a Chlorella mutant which requires light for chlorophyll production. The role of this enzyme in δ-aminolevulinic acid metabolism in plants is not clearly understood.  相似文献   

5.
Kim WT  Yang SF 《Plant physiology》1992,100(3):1126-1131
Ethylene production in plant tissues declines rapidly following induction, and this decline is due to a rapid decrease in the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme in ethylene biosynthesis. To study the nature of the rapid turnover of ACC synthase in vivo, proteins in wounded ripening tomato (Lycopersicon esculentum) fruit discs were radiolabeled with [35S]methionine, followed by a chase with nonradioactive methionine. Periodically, the radioactive ACC synthase was isolated with an immunoaffinity gel and analyzed. ACC synthase protein decayed rapidly in vivo with an apparent half-life of about 58 min. This value for protein turnover in vivo is similar to that previously reported for activity half-life in vivo and substrate-dependent enzyme inactivation in vitro. Carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol, potent uncouplers of oxidative phosphorylation, strongly inhibited the rapid decay of ACC synthase protein in the tissue. Degradation of this enzyme protein was moderately inhibited by the administration of aminooxyacetic acid, a competitive inhibitor of ACC synthase with respect to its substrate S-adenosyl-l-methionine, α,α′-dipyridyl, and phenylmethanesulfonyl fluoride or leupeptin, serine protease inhibitors. These results support the notion that the substrate S-adenosyl-l-methionine participates in the rapid inactivation of the enzyme in vivo and suggest that some ATP-dependent processes, such as the ubiquitin-requiring pathway, are involved in the degradation of ACC synthase proteins.  相似文献   

6.
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.  相似文献   

7.
α-l-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60°C and exhibited stability at pH values from 3 to 7 and at temperatures up to 60°C. The enzymes released arabinose from p-nitrophenyl-α-l-arabinofuranoside, O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, and arabinose-containing polysaccharides but not from O-β-d-xylopyranosyl-(1→2)-O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. α-l-Arabinofuranosidase I also released arabinose from O-β-d-xylopy-ranosyl-(1→4)-[O-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. However, α-l-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. α-l-Arabinofuranosidase I hydrolyzed all linkages that can occur between two α-l-arabinofuranosyl residues in the following order: (1→5) linkage > (1→3) linkage > (1→2) linkage. α-l-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1→5) linkage > (1→2) linkage > (1→3) linkage. α-l-Arabinofuranosidase I preferentially hydrolyzed the (1→5) linkage of branched arabinotrisaccharide. On the other hand, α-l-arabinofuranosidase II preferentially hydrolyzed the (1→3) linkage in the same substrate. α-l-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas α-l-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.Recently, it has been proven that l-arabinose selectively inhibits intestinal sucrase in a noncompetitive manner and reduces the glycemic response after sucrose ingestion in animals (33). Based on this observation, l-arabinose can be used as a physiologically functional sugar that inhibits sucrose digestion. Effective l-arabinose production is therefore important in the food industry. l-Arabinosyl residues are widely distributed in hemicelluloses, such as arabinan, arabinoxylan, gum arabic, and arabinogalactan, and the α-l-arabinofuranosidases (α-l-AFases) (EC 3.2.1.55) have proven to be essential tools for enzymatic degradation of hemicelluloses and structural studies of these compounds.α-l-AFases have been classified into two families of glycanases (families 51 and 54) on the basis of amino acid sequence similarities (11). The two families of α-l-AFases also differ in substrate specificity for arabinose-containing polysaccharides. Beldman et al. summarized the α-l-AFase classification based on substrate specificities (3). One group contains the Arafur A (family 51) enzymes, which exhibit very little or no activity with arabinose-containing polysaccharides. The other group contains the Arafur B (family 54) enzymes, which cleave arabinosyl side chains from polymers. However, this classification is too broad to define the substrate specificities of α-l-AFases. There have been many studies of the α-l-AFases (3, 12), especially the α-l-AFases of Aspergillus species (28, 1215, 17, 22, 23, 2832, 3639, 4143, 46). However, there have been only a few studies of the precise specificities of these α-l-AFases. In previous work, we elucidated the substrate specificities of α-l-AFases from Aspergillus niger 5-16 (17) and Bacillus subtilis 3-6 (16, 18), which should be classified in the Arafur A group and exhibit activity with arabinoxylooligosaccharides, synthetic methyl 2-O-, 3-O-, and 5-O-arabinofuranosyl-α-l-arabinofuranosides (arabinofuranobiosides) (20), and methyl 3,5-di-O-α-l-arabinofuranosyl-α-l-arabinofuranoside (arabinofuranotrioside) (19).In the present work, we purified two α-l-AFases from a culture filtrate of Aspergillus awamori IFO 4033 and determined the substrate specificities of these α-l-AFases by using arabinose-containing polysaccharides and the core oligosaccharides of arabinoxylan and arabinan.  相似文献   

8.
Liu Y  Su LY  Yang SF 《Plant physiology》1985,77(4):891-895
When whole unripe green tomato fruits (Lycopersicon esculentum Mill, cv T3) were treated with ethylene (10 microliters per liter) for 18 hours, the fruit's ability to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to N-malonyl-ACC (MACC) increased markedly and such an effect was also observed in fruits of mutant nor, which cannot ripen normally. The promotion of the capability to malonylate ACC by ethylene increased with the increasing ethylene concentration from 0.1 to 100 microliters per liter and with increasing duration of ethylene treatment up to 8 hours; a longer duration of ethylene treatment did not further increase the malonylation capability. When ethylene was withdrawn, the promotion disappeared within 72 hours. Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene. Ethylene treatment also promoted the fruits' capability to conjugate d-amino acids and α-amino-isobutyric acid. Since the increase in the tissue's capability to malonylate ACC was accompanied by an increase in the extractable activity of ACC and d-amino acid malonyltransferase, ethylene is thought to promote the development of ACC/d-amino acid malonyltransferase in unripe tomato fruits.  相似文献   

9.
A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia coli cells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictly l specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, including l-β-3,4-dihydroxyphenylserine, l-β-3,4-methylenedioxyphenylserine, and l-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificity l-TA from Saccharomyces cerevisiae, l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of the l-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.β-Hydroxy-α-amino acids constitute an important class of compounds. They are natural products in their own right and are components of a range of antibiotics, for example, cyclosporin A, lysobactin, and vancomycin (30) and bouvardin and deoxybouvardin (6). 4-Hydroxy-l-threonine is a precursor of rizobitoxine, a potent inhibitor of pyridoxal 5′-phosphate (PLP)-dependent enzymes (32). 3,4,5-Trihydroxyl-l-aminopentanoic acid is a key component of polyoxins (32). l-threo-3,4-Dihydroxyphenylserine is a new drug for Parkinson’s disease therapy (13). However, the industrial production of β-hydroxy-α-amino acids has been limited to chemical synthesis processes, which need multiple steps to isolate the four isomers (l-threo form, d-threo form, l-erythro form, and d-erythro form). Threonine aldolase (EC 4.1.2.5), which stereospecifically catalyzes the retro-aldol cleavage of threonine, is a potentially useful catalyst for the synthesis of substituted amino acids from aldehyde and glycine (27, 31, 32).Two different types of threonine aldolases are known so far. l-allo-Threonine aldolase (l-allo-TA), isolated and purified from Aeromonas jandaei DK-39 (8), stereospecifically catalyzes the reversible interconversion of l-allo-threonine and glycine. Low-specificity l-threonine aldolase (l-TA) catalyzes the cleavage of both l-threonine and l-allo-threonine to glycine and acetaldehyde, as well as the reverse reaction, aldol condensation. The enzymes have been purified and characterized from Candida humicola (9, 34) and Saccharomyces cerevisiae (12). Low-specificity l-TA activity has also been shown to exist in mammals (7, 23, 26) and a variety of other microbial species (2, 4, 17, 35). The enzyme is physiologically important for the synthesis of cellular glycine in yeast (12, 15, 16). Threonine aldolases with distinct stereospecificities are ideal targets for enzymology studies on structural and functional relationships. However, information on the primary structures of threonine aldolases was limited to our recent studies (11, 12). The construction of an overproduction system for threonine aldolase will be indispensable for the industrial biosyntheses of β-hydroxy-α-amino acids.The present work focuses on the cloning, sequencing, and overexpression in Escherichia coli cells of the low-specificity l-TA gene from Pseudomonas sp. strain NCIMB 10558, the purification and characterization of the recombinant enzyme, and the identification of the active-site lysine residue of the enzyme by site-directed mutagenesis. Evidence is presented that Lys207 of low-specificity l-TA probably functions as a catalytic residue, forming an internal Schiff base with the PLP of the enzyme to catalyze the reversible aldol reaction. This is the first report showing a purified enzyme with l-β-3,4-dihydroxyphenylserine aldolase and l-β-3,4-methylenedioxyphenylserine aldolase activities, providing a new route for the industrial production of these important unnatural amino acids.  相似文献   

10.
Fry SC  Northcote DH 《Plant physiology》1983,73(4):1055-1061
Cultured spinach (Spinacia oleracea L. cv Monstrous Viroflay) cells incorporated exogenous l-[3H]arabinose sequentially into β-l-arabinopyranose-1-phosphate, uridine diphospho-β-l-arabinopyranose, uridine diphospho-α-d-xylopyranose and (in some experiments) α-d-xylopyranose-1-phosphate. The amount of 3H in each of these compounds reached a plateau after a few minutes, and could be rapidly chased with nonradioactive l-arabinose, demonstrating rapid turnover. After a few minutes' lag, incorporation of 3H into the arabinofuranosyl, arabinopyranosyl, and xylopyranosyl residues of polysaccharides was linear with respect to time. The kinetics of labeling were compatible with UDP-β-l-arabinopyranose and UDP-α-d-xylopyranose being the immediate precursors of arabians (both the pyranose and the furanose residues) and xylans, respectively. No other radioactive nucleotides were formed; in particular, UDP-arabinofuranose was absent. There was no evidence for conversion of arabinopyranose to arabinofuranose within the polysaccharides, suggesting that this conversion occurs during polymer synthesis. The glycolipids detected showed too slow a turnover to be intermediates of pentosan synthesis.  相似文献   

11.
Several esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of S-(3-aminopropyl)-l-cysteine and the methyl ester of S-(4-aminobutyl)-N-toluene-p-sulphonyl-l-cysteine were synthesized. The kinetics of hydrolysis of these and esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of l-arginine, l-lysine, S-(2-aminoethyl)-l-cysteine and esters of γ-guanidino-l-α-toluene-p-sulphonamidobutyric acid and α-N-toluene-p-sulphonyl-l-homoarginine by α- and β-trypsin were compared. On the basis of values of the specificity constants (kcat./Km), the two enzymes display similar catalytic efficiency towards some substrates. In other cases α-trypsin is less efficient than β-trypsin. It is possible that α-trypsin possesses greater molecular flexibility than β-trypsin.  相似文献   

12.
A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes.  相似文献   

13.
Pretreatment of detached carnation petals (Dianthus caryophyllus cv White Sim) for 24 hours with 0.1 millimolar of the cytokinins n6-benzyl-adenine (BA), kinetin, and zeatin blocked the conversion of externally supplied 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene and delayed petal senescence by 8 days. The normal enhanced wilting and increase in endogenous levels of ACC and ethylene production following exposure of petals to ethylene (16 μl/l for 10 hours), were not observed in BA-pretreated petals. In carnation foliage leaves pretreated with 0.1 mm BA, a reduction rather than inhibition of the conversion of exogenous ACC to ethylene was observed. This indicates that foliage leaves respond to cytokinins in a different way than petals. A constant 24-hour treatment with BA (0.1 mm) was not able to reduce ethylene production of senescing carnation petals, while 2 mm aminoxyacetic acid, a known inhibitor of ACC synthesis, or 10 mm propyl gallate, a free radical scavenger, decreased ethylene production significantly.  相似文献   

14.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

15.
In the present study, we identified l-erythro-β-hydroxyasparagine (l-β-EHAsn) found abundantly in human urine, as a novel substrate of Zn2+-dependent d-serine dehydratase (DSD). l-β-EHAsn is an atypical amino acid present in large amounts in urine but rarely detected in serum or most organs/tissues examined. Quantitative analyses of urinary l-β-EHAsn in young healthy volunteers revealed significant correlation between urinary l-β-EHAsn concentration and creatinine level. Further, for in-depth analyses of l-β-EHAsn, we developed a simple three-step synthetic method using trans-epoxysuccinic acid as the starting substance. In addition, our research revealed a strong inhibitory effect of l-β-EHAsn on mammalian serine racemase, responsible for producing d-serine, a co-agonist of the N-methyl-d-aspartate (NMDA) receptor involved in glutamatergic neurotransmission.  相似文献   

16.
The leucine specific serine proteinase present in the soluble fraction of leaves from Spinacia oleracea L. (called Leu-proteinase) has been purified by acetone precipitation and a combination of gel-filtration, ion exchange, and adsorption chromatography. This enzyme shows a molecular weight of 60,000 ± 3,000 daltons, an isoelectric point of 4.8 ± 0.1, and a relative electrophoretic mobility of 0.58 ± 0.03. The Leu-proteinase catalyzed hydrolysis of p-nitroanilides of N-α-substituted(-l-)amino acids as well as of chromogenic macromolecular substrates has been investigated between pH 5 and 10 at 23 ± 0.5°C and I = 0.1 molar. The enzyme activity is characterized by a bell-shaped profile with an optimum pH value around 7.5, reflecting the acid-base equilibrium of groups with pKa values of 6.8 ± 0.1 and 8.2 ± 0.1 (possibly the histidyl residue present at the active site of the enzyme and the N-terminus group). Among the substrates considered, N-α-benzoyl-l-leucine p-nitroanilide shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 1 × 10−9 molar. In agreement with the enzyme specificity, only N-α-tosyl-l-leucine chloromethyl ketone, di-isopropyl fluorophosphate and phenylmethylsulfonyl fluoride, among compounds considered specific for serine enzymes, strongly inhibit the Leu-proteinase. Accordingly, the enzyme activity is insensitive to cations, chelating agents, sulfydryl group reagents, and activators.  相似文献   

17.
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.  相似文献   

18.
During cell-free experiments with membranes isolated from carnation petals (Dianthus caryophillus L. cv White Sim), the conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene was blocked by a factor derived from the cytosol. Subsequent characterization of the inhibitor revealed that its effect was concentration dependent, that it was water soluble, and that it could be removed from solution by dialysis and addition of polyvinyl-polypyrrolidone. Activity profiles obtained after solvent partitioning over a range of pH values and after chromatography on silica gel, size exclusion gel, and ion exchange resins revealed that the inhibitor was a highly polar, low molecular weight species that was nonionic at low pH and anionic at pH values above 8. Use of selected solvent systems during paper and thin layer chromatography combined with specific spray reagents tentatively identified the compound as a hydroxycinnamic acid derivative. Base hydrolysis and subsequent comparison with known standards by high performance liquid chromatography, gas-liquid chromatography, and ultraviolet light spectroscopy established that the inhibitor was a conjugate with a ferulic acid moiety. Release of ferulic acid following treatment with β-glucosidase also indicated the presence of a glucose moiety, and unequivocal identification of the inhibitor as 1-O-feruloyl-β-d-glucose was confirmed by gas chromatography-mass spectroscopy and by ultraviolet light, 1H-, and 13C- nuclear magnetic resonance spectroscopy. Feruloylglucose constituted about 0.1% of the dry weight of stage III (preclimacteric) carnation petals, but concentrations fell sharply during stage IV (climacteric), when ethylene production peaks and the flowers senesce. In a reaction mixture containing microsome-bound ethylene forming enzyme system, 98% of all ethylene production was abolished in the presence of 50 μm concentrations of the inhibitor.  相似文献   

19.
20.
Promotion of seed germination by cyanide   总被引:2,自引:2,他引:0  
Potassium cyanide at 3 μm to 10 mm promotes germination of Amaranthus albus, Lactuca sativa, and Lepidium virginicum seeds. l-Cysteine hydrogen sulfide lyase, which catalyzes the reaction of HCN with l-cysteine to form β-l cyanoalanine, is active in the seeds. β-l-Cyanoalanine is the most effective of the 23 α-amino acids tested for promoting germination of A. albus seeds. Aspartate, which is produced by enzymatic hydrolysis of asparagine formed by hydrolysis from β-cyanoalanine, is the second most effective of the 23 amino acids. Uptake of aspartate-4-14C is much lower than of cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号