首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase transition of the purple membrane observed by differential scanning calorimetry (Jackson, M.B. and Sturtevant, J.M. (1978) Biochemistry 17, 911–915) has been investigated by X-ray diffraction, circular dichroism and absorption spectrum, in comparison with the phase transition in the brown holo-membrane. The two-dimensional crystal of bacteriorhodopsin transformed into two-dimensional liquid around 74–78°C in the purple membrane and around 50–60°C in the brown holo-membrane. The X-ray diffraction patterns obtained at 78°C for the purple membrane and at 60°C for the brown holo-membrane exhibit several broad peaks. Analysis of the pattern suggests that bacteriorhodopsin molecules aggregate in trimers even above the phase transition temperature. The negative circular dichroism band in the visible region is still present at 80°C in the purple membrane and at 60°C in the brown holo-membrane, but becomes negligibly small at 70°C in the brown holo-membrane. The 560 nm absorption peak due to bacteriorhodopsin changes its position and height drastically around 80°C in the brown holo-membrane as in the purple membrane. X-ray diffraction studies have been made on membranes of total lipids extracted from the purple membrane. No indication of the phase transition has been found between ?81°C and 77°C.  相似文献   

2.
Thermodynamic studies of purple membrane   总被引:2,自引:0,他引:2  
Differential dilatometric and differential scanning calorimetric measurements have been made of purple membrane with an emphasis upon the temperature range 5 degrees C less than T less than 45 degrees C. The coefficient of thermal expansion alpha is about 7 X 10(-4)/Cdeg up to 30 degrees C and decreases at higher temperatures. The specific heat increases rapidly with temperature with absolute values in the range 0.30-0.45 cal/Cdeg per g. A nearly constant alpha juxtaposed with a rapidly increasing specific heat is similar to the properties of lipid bilayers in the gel phase and alkanes in the solid phase. This behavior is explained by the concept of hindered vibrations which would now appear to apply to at least one integral membrane protein. There may also be a small broad transition centered near 20-25 degrees C that would correspond to the melting of less than 25 degrees of freedom per bacteriorhodopsin molecule and associated lipids. Using our measured apparent specific volume the average thickness of purple membrane is calculated to be 43.5 A. The specific volume of interaction of lipids and proteins is estimated, using the amino acid sequence of bacteriorhodopsin and average amino acid volumes from structural studies of other proteins, to be about 11% of the specific volume of the purple membrane lipids or 4% of the volume of the bacteriorhodopsin protein. A positive volume of interaction is consistent with lipid-protein interactions being an important determinant of the thermodynamic properties of purple membrane.  相似文献   

3.
Yokoyama Y  Sonoyama M  Mitaku S 《Proteins》2004,54(3):442-454
Heterogeneity in the state of bacteriorhodopsin in purple membrane was studied through temperature jump experiments carried out in darkness and under illumination with visible light. The thermal denaturation, the irreversible component of spectral change at high temperature, had two decay components, suggesting that bacteriorhodopsin in purple membrane has heterogeneous stability. The temperature dependence of kinetic parameters under illumination revealed that the fast-decay component gradually increased at above 60 degrees C, indicating that the proportion of unstable bacteriorhodopsin increased. Significant change in the visible circular dichroism (CD) spectra was observed in darkness in the same temperature range as the increase of the fast-decay component under illumination. Denaturation experiments for C-terminal-cleaved bacteriorhodopsin showed that the C-terminal segment had some effect on the structural stability of bacteriorhodopsin under illumination. Dynamic and static models of the inhomogeneous stability of bacteriorhodopsin in purple membrane are discussed on the basis of the results of the denaturation kinetics and the visible CD spectra.  相似文献   

4.
Removal of the COOH-terminal region of bacteriorhodopsin by digestion with trypsin or papain reduces the yield of light-induced H+ release by 50-70%. The rate of H+ release is not affected significantly, but the half time of H+ uptake increases almost twofold. However, there is no effect on the photocycle of bacteriorhodopsin as judged by the yield and decay kinetics of the M412 photointermediate. The H+:M ratio in enzyme-digested membranes is approximately 0.4-0.8, whereas untreated membranes have a H+:M ratio of approximately 2. Purple membrane sheets stored in distilled water at 4 degrees C for prolonged periods also have a low H+:M ratio, probably due to protease activity associated with bacterial contamination. Electrophoresis on sodium dodecylsulfate-polyacrylamide gels showed that both the enzyme-treated and the stored purple membrane samples have a higher electrophoretic mobility compared to the fresh preparation. The reduction in molecular weight can be accounted for by the loss of several residues from the COOH-terminal portion of the bacteriorhodopsin. We propose that the COOH-terminal region is partially responsible for the high yield of H+ release by the purple membrane.  相似文献   

5.
The red shift in the absorption maximum of native purple membrane suspensions caused by deionization is missing in lipid-depleted purple membrane, and the pK of the acid-induced transition is down-shifted to pH approximately 1.4 and has become independent of cation concentration (Szundi, I., and W. Stoeckenius. 1987. Proc. Natl. Acad. Sci. USA. 84:3681-3684). However, the proton pumping function cannot be demonstrated in these membranes. When native acidic lipids of purple membrane are exchanged for egg phosphatidylcholine or digalactosyldiglyceride, bacteriorhodopsin is functionally active in the modified membrane. It shows spectral shifts upon light-dark adaptation, a photocycle with M-intermediate and complex decay kinetics; when reconstituted into vesicles with the same neutral lipids, it pumps protons. Unlike native purple membrane, lipid-substituted modified membranes do not show a shift of the absorption maximum to longer wavelength upon deionization. A partial shift can be induced by titration with HCl; it has a pK near 1.5 and no significant salt dependence. Titration with HNO3 and H2SO4, which causes a complete transition in the lipid-depleted membranes, i.e., it changes their colors from purple to blue, does not cause the complete transition in the lipid-substituted preparations. These results show that the purple color of bacteriorhodopsin is independent of cations and their role in the purple-to-blue transition of native membranes is indirect. The purple and blue colors of bacteriorhodopsin are interpreted as two conformational states of the protein, rather than different protonation states of a counterion to the protonated Schiff base.  相似文献   

6.
Arrhenius parameters for formation and decay of phototransients in suspensions of purple membrane fragments in H2O and 2H2O have been determined in the temperature range 0–60 °C. Kinetic isotope effects are found which show that proton transfer steps are involved in both formation and decay of the two longest-lived transients absorbing at 410 nm and 660 nm, respectively. The results also suggest that these transients do not occupy a single pathway in the spontaneous deexcitation of bacteriorhodopsin within the purple membrane. Purple membrane undergoes a phase transition at 25–30 °C in both H2O and 2H2O.  相似文献   

7.
M P Heyn  C Dudda  H Otto  F Seiff  I Wallat 《Biochemistry》1989,28(23):9166-9172
X-ray diffraction measurements show that in contrast to the purple membrane, the bacteriorhodopsin molecules are not organized in a hexagonal lattice in the deionized blue membrane. Addition of Ca2+ restores both the purple color and the normal (63 A) hexagonal protein lattice. In the blue state, the circular dichroism spectrum in the visible has the typical exciton features indicating that a trimeric structure is retained. Time-resolved linear dichroism measurements show that the blue patch rotates in aqueous suspension with a mean correlation time of 11 ms and provide no evidence for rotational mobility of bacteriorhodopsin within the membrane. The circular dichroism spectra of the blue and the Ca2+-regenerated purple state in the far-UV are different, indicating a small change in secondary structure. The thermal stability of the blue membrane is much smaller than that of the purple membrane. At pH 5.0, the irreversible denaturation transition of the blue form has a midpoint at 61 degrees C. The photocycle of the blue membrane (lambda ex 590 nm) has an L intermediate around 540 nm whose decay is slowed down into the millisecond time range (5 ms). Light-dark adaptation in the blue membrane is rapid with an exponential decay time of 38 s at 25 degrees C. The purple to blue transition apparently involves a conformational change in the protein leading to a change in the aggregation state from a highly ordered and stable hexagonal lattice to a disordered array of thermally more labile trimers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Laser flash photolysis and low-temperature absorption studies of the photocycle of orthorhombic purple membrane (o-PM) reveal the existence of the same K, L, and M intermediates as found in the native hexagonal purple membrane (h-PM). However, the 0 intermediate is missing in the o-PM. The absorption spectrum of the K intermediate of o-PM is blueshifted by ~15 nm relative to the K intermediate found in the hexagonal purple membrane. The decay relaxation time constants of M in the o-PM are higher by more than an order of magnitude than the corresponding relaxation time constants in the h-PM. Similarly to the h-PM, the decay of M depends on the pulse width of excitation. The time-independent anisotropy factor obtained in photoselection studies of the M intermediate demonstrates the complete immobility of bacteriorhodopsin (bR) within the o-PM matrix. The same anisotropy factor of 0.3 obtained for o-PM and for h-PM suggests that in both crystalline lattices the transition moment of the retinal chromophore has similar angles with the plane of the membrane. The dependence of the decay kinetics of M on its occupancy may suggest the existence of kinetic coupling between neighboring bR molecules.  相似文献   

9.
Dioumaev AK  Lanyi JK 《Biochemistry》2008,47(42):11125-11133
Below 195 K, the bacteriorhodopsin photocycle could not be adequately described with exponential kinetics [Dioumaev, A. K., and Lanyi, J. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 9621-9626] but required distributed kinetics, previously found in hemoglobin and myoglobin at temperatures below the vitrification point of the surrounding solvent. The aim of this study is to determine which factors cause the switch from this low-temperature regime to the conventional kinetics observed at ambient temperature. The photocycle was monitored by time-resolved FTIR between 180 and 280 K, using the D96N mutant. Depending on the temperature, decay and temporal redistribution of two or three intermediates (L, M, and N) were observed. Above approximately 245 K, an abrupt change in the kinetic behavior of the photocycle takes place. It does not affect the intermediates present but greatly accelerates their decay. Below approximately 240 K, a kinetic pattern with partial decay that cannot be explained by conventional kinetics, but suggesting distributed kinetics, was dominant, while above approximately 250 K, there were no significant deviations from exponential behavior. The approximately 245 K critical point is >/=10 K below the freezing point of interbilayer water, and we were unable to correlate it with any FTIR-detectable transition of the lipids. Therefore, we attribute the change from distributed to conventional kinetics to a thermodynamic phase transition in the protein. Most probably, it is related to the freezing and thawing of internal fluctuations of the protein, known as the dynamic phase transition, although in bacteriorhodopsin the latter is usually believed to take place at least 15 K below the observed critical temperature of approximately 245 K.  相似文献   

10.
When observed over a temperature range, erythrocyte membrane lipids undergo a transition at 18-20 degrees C (Zimmer, G. and Schirmer, H. (1974) biochim. Biophys. Acta 345, 314-320). This observation has prompted an investigation of the effects that substrate binding has on the transition of the red cell membrane. Glucose and sorbose were compared, since transport kinetics of these sugars still pose unresolved questions. In membranes, preloaded with glucose, the break at the transition temperature was intensified, while it was abolished or reversed in membranes preloaded with sorbose. These results were corroborated using different solubilization procedures (sonication, sodium dodecyl sulfate treatment) of the membranes, and also different techniques (viscosimetry, 90 degrees light scattering, 1-anilino-naphthalene-8-sulfonate fluorescence). In extracted membrane lipids, viscosimetry indicated a break at transition temperature after preloading with either glucose or sorbose. Disc electrophoresis revealed a different binding pattern of the two sugars. It is suggested, that the amplification of the discontinuity in red cell membranes by glucose and the abolition or reversal of the break by sorbose are mediated by membrane protein- and/or membrane lipid-protein interaction.  相似文献   

11.
The photoconversion of bacteriorhodopsin and the effects of an applied electric field (5 · 107 V · m?1) were studied in dry films of purple membranes from Halobacterium halobium. The electric field was found to cause at least two different effects: (1) it blocks in part the formation of the batho-bacteriorhodopsin (K), most probably due to electrically-induced dark transition of some bacteriorhodopsin molecules into the photochemically inactive form; (2) it decreases the rate of the intermediate M decay, the rise time of the M formation being unaffected by electric field. The observed phenomena may suggest a feedback control mechanism for the regulation of the bacteriorhodopsin photocycle in purple membranes.  相似文献   

12.
A series of organized (PDAC/PM)(n) (poly(diallyldimethylammonium chloride)/purple membrane) multilayer films were prepared by alternate adsorptions of positively charged PDAC polyelectrolyte and negatively charged purple membrane (PM). The kinetics of the photocycle of bacteriorhodopsin (bR) in PM was studied by flash photolysis and transient photovoltage methods. Although the orientation of the adsorbed bR depends on the pH of the PM suspension, the kinetics of the photo-induced reaction cycle in dehydrated films is independent of the deposition pH. In dry (PDAC/PM)(n) films the decay of the M intermediate to the initial bR state is multiexponential and delayed to several minutes for both orientations. A simultaneous two-exponential decay in millisecond time domain was observed at red wavelengths. The source of the red-shifted absorption is suggested to be the C(610) intermediate of the cis photocycle of bR.  相似文献   

13.
本实验用人工双分子平板膜系统(BLM)测量了紫膜碎片和在DMPC脂质襄泡膜中的单体菌紫质分子的光电响应以及与温度的关系(处理温度17℃至31℃).温度对紫膜碎片的光电响应影响不大,但对单体菌紫质分子的光电响应有明显影响.用园二色(CD)方法相应地观察了温度对紫膜碎片和单体菌紫质分子在可见波长范围内的CD谱的影响 同样观察到温度对单体菌紫质分子的CD谱有明显影响.两者的影响很可能与脂质襄泡中DMPC的相变温度有关.  相似文献   

14.
K Fukuda  T Kouyama 《Biochemistry》1992,31(47):11740-11747
The absorption spectrum of light-adapted purple membrane in 3 M KCl is dependent on temperature even in the room temperature region. Temperature-induced difference spectra at various pH values suggested that the trans isomer of bacteriorhodopsin, bR570, is in thermal and/or photodynamic equilibrium with several different conformers. The major second conformer occurring at neutral pH had the same spectroscopic properties as the 13-cis isomer, and its content at 35 degrees C was estimated to be more than 20%. Heterogeneity in the protein conformation became more significant above pH8, where temperature-induced difference spectra exhibited a negative peak at 580 nm and a positive peak at 296 nm. This absorption change is very similar to that observed upon the formation of the N intermediate, suggesting that an N-like conformer occurs at high pH and temperature. A significant temperature dependence was also seen in the M decay kinetics at high pH, which were described by two decay components; i.e., the fast decaying M (Mf) was predominant at low temperature, but the amplitude of the slow component (M(s)) increased with increasing temperature. It is suggested that M(s) is generated upon excitation of the N-like conformer, in which the residue (Asp-96) usually acting as a proton donor to the Schiff base is deprotonated. The N-like conformer could be N itself, because M(s) was enhanced when N was accumulated by background light. A strong correlation between the amplitude of M(s) and the concentration of N was also revealed by the accumulation kinetics of Mf, M(s), and N after the onset of continuous actinic light.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Irreversible inhibition of butyrylcholinesterase by soman was studied in the presence of the substrate (o-nitrophenyl butyrate). Inhibition was found of the competitive complexing type. Study at different temperatures and pressures showed that the behavior of the enzyme differs from that of the inhibitor-free enzyme. In the absence of inhibitor, enzyme kinetics displayed a non-linear temperature dependence with a break at 21 degrees C. In the presence of a non-inhibitor structural analog of soman (pinacolyl dimethylphosphinate and methyl dimethylphosphinate), the Arrhenius plot break is slightly shifted (18 degrees C). On the other hand, in the presence of soman this break is abolished. The pressure-dependence of the substrate hydrolysis revealed also differences between the native enzyme and the enzyme in the presence of soman: the sign and magnitude of the apparent activation volume (delta V not equal to) were different for the two reactions. Beyond 300 bar, in the presence of soman, a plateau (delta V not equal to approx. 0) was observed over a large pressure range depending on temperature. Such a behavior with respect to temperature and pressure can reflect a soman-induced enzyme conformational state. Thus, temperature and pressure perturbations of the kinetics allow to complete the inhibition scheme of butyrylcholinesterase by soman. Our data suggest that upon soman binding, the enzyme undergoes a long-lived soman-induced-fit conformational change preceding the phosphonylation step. However, an alternative hypothesis according to which the enzyme processes a secondary soman-binding site cannot be ruled out.  相似文献   

16.
On capturing a quantum of light, the bacteriorhodopsin of Halobacterium halobium undergoes a photocycle involving different intermediates. The exact scheme of the photocycle and especially the number of M intermediates are subjects of debate. For a quantitative analysis of many effects connected with the photocycle, e.g. the effect of the membrane potential on the kinetics of M decay (Groma et al., 1984. Biophys. J. 45:985-992), a knowledge of the exact photocycle is needed. In the present work sophisticated measurements were made on the decay kinetics of the M forms in cell envelope vesicles, purple membrane suspension and purple membrane fragments incorporated in polyacrylamide gel. The experimental data were analyzed by fitting one, two, and three discrete exponentials. Three different real components were found in the M decay of cell envelope vesicles in 4 M NaCl. All of them exhibited a temperature-dependence obeying the Arrhenius law. Two real components were found for the purple membrane in suspension and in gel in NaCl-free medium. The third phase appeared when the gel was soaked in 4 M NaCl. As an independent means of analysis, a continuous distribution of exponentials was also fitted to the M decay kinetics in cell envelope vesicles. This calculation also resulted in three processes with distinct rates or alternatively two processes with distributed rates.  相似文献   

17.
The time course of structural changes accompanying the transition from the M412 intermediate to the BR568 ground state in the photocycle of bacteriorhodopsin (BR) from Halobacterium halobium was studied at room temperature with a time resolution of 15 ms using synchrotron radiation X-ray diffraction. The M412 decay rate was slowed down by employing mutated BR Asp96Asn in purple membranes at two different pH-values. The observed light-induced intensity changes of in-plane X-ray reflections were fully reversible. For the mutated BR at neutral pH the kinetics of the structural alterations (tau 1/2 = 125 ms) were very similar to those of the optical changes characterizing the M412 decay, whereas at pH 9.6 the structural relaxation (tau 1/2 = 3 s) slightly lagged behind the absorbance changes at 410 nm. The overall X-ray intensity change between the M412 intermediate and the ground state was about 9% for the different samples investigated and is associated with electron density changes close to helix G, B and E. Similar changes (tau 1/2 = 1.3-3.6 s), which also confirm earlier neutron scattering results on the BR568 and M412 intermediates trapped at -180 degrees C, were observed with wild type BR retarded by 2 M guanidine hydrochloride (pH 9.4). The results unequivocally prove that the tertiary structure of BR changes during the photocycle.  相似文献   

18.
A suspension of purple membrane fragments in a solution of soya phosphatidyl-choline in hexane is spread at an air-water interface. Surface pressure and surface potential measurements indicate that the membrane fragments and lipids organize at the interface as an insoluble film. Electron microscopy of shadow-cast replicas of the film reveal that in the bacteriorhodopsin to soya PC weight ratio range of 2:1 to 10:1, these films consist of nonoverlapping membrane fragments which occupy approximately 35% of the surface area and are separated by a lipid monolayer. Furthermore, the membrane fragments are oriented with their intracellular surface towards the aqueous subphase. Nearly all the bacteriorhodopsin molecules at the interface are spectroscopically intact and exhibit visible spectral characteristics identical to those in aqueous suspensions of purple membrane and in intact bacteria. In addition, bacteriorhodopsin in air-dried interface films show spectral changes upon dark-adaptation and upon flash illumination similar to those observed in aqueous suspensions of purple membrane, but with slower kinetics. The kinetics of the spectral changes in interface films can be made nearly the same as in aqueous suspension by immersing the films in water.  相似文献   

19.
This review begins with a brief history of early studies on the involvement of lipids in certain bacteriorhodopsin (BR) properties. Such properties include the regulation of the pK for the purple to blue transition caused by deionization, and the reformation of trimers from monomers after exposure of the purple membrane to Triton X-100. Most of the review is devoted to newer studies which indicate an important role for the neutral lipid squalene in the functional stability of the fast-decaying M-intermediate, for its decay through a pathway involving the O-intermediate, and for the regulation of the relative amounts of slow-decaying and fast-decaying forms of M. Participation of a peripheral acidic amino acid in the overall expression of fast-decaying M is also discussed. Initial studies suggest that the acidic amino acid may be Asp36 and/or Asp38.  相似文献   

20.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0 degrees C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospho lipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at -25 degrees C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号