首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Various C-1'-substituted acyclic N9 adenine nucleosides were prepared from 9-[(1-hydroxymethyl)(3-monomethoxytrityloxy)propyl]-N6-monomethoxytrityladenine. The hydroxymethyl was modified to the phosphonomethoxy derivative, and the 3-monomethoxytrityloxy was converted to hydroxyl, methoxy, azido, and amino. Other substituents, such as ethyl and ea-hydroxyethyl were also prepared. The resulting phosphonomethoxy derivatives were converted to prodrugs.  相似文献   

2.
The appropriately protected C-1'-hydroxyethyl-3-hydroxypropyl-N9-adenine nucleoside was prepared from 1-pivaloyloxy-5-tert-butyldiphenylsilyloxy-3-pentanol and adenine through the Mitsunobu reaction. One of the terminal hydroxyls was converted to the phosphonomethoxy derivative and the prodrug.  相似文献   

3.

The appropriately protected C-1′-hydroxyethyl-3-hydroxypropyl-N9-adenine nucleoside was prepared from 1-pivaloyloxy-5-tert-butyldiphenylsilyloxy-3-pentanol and adenine through the Mitsunobu reaction. One of the terminal hydroxyls was converted to the phosphonomethoxy derivative and the prodrug.  相似文献   

4.
9-(S)-(3-Hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA) was prepared from 9-(S)-(2,3-dihydroxypropyl)adenine (DHPA) via its 3-O-chloromethanephosphonate. The latter compound is obtained by treatment of DHPA with chloromethanephosphonyl dichloride and the 3'-isomer separated from its 2'-congener by ion-exchange chromatography. The 3'-isomer is prepared selectively by the same method starting from 2',6-dibenzoyl derivative of DHPA. The 3'-ester is transformed to HPMPA by treatment with aqueous alkali. Alternatively, 9-(S)-(2-hydroxy-3-triphenylmethoxypropyl)-N6-benzoyladenine can be converted to HPMPA by reaction with dialkyl p-tolylsulfonyloxymethane-phosphonates in the presence of NaH followed by successive acid and alkaline treatment.  相似文献   

5.
Cyclopropyl carbocyclic nucleosides have been synthesized from the key intermediate 2 which was converted to the mesylated cyclopropyl methyl alcohol 3. Condensation of compound 3 with various purine and pyrimidine bases gave the desired nucleosides. All synthesized nucleosides were evaluated for antiviral activity and cellular toxicity. Among them adenine 22 and guanine 23 derivatives showed moderate antiviral activity against HIV-1 and HBV. None of the other compounds showed any significant antiviral activities against HIV-1, HBV, HSV-1 and HSV-2 in vitro up to 100 microM.  相似文献   

6.
The new adduct N6-(2-carboxyethyl)adenine (N6-CEA) was prepared from 1-(2-carboxyethyl)adenine (1-CEA) by base catalyzed (Dimroth) rearrangement of 1-CEA. The structure of N6-CEA was assigned on the basis of UV spectra and electron impact and isobutane chemical ionization mass spectra. When the carcinogen beta-propiolactone was reacted in vitro with calf thymus DNA, 1-CEA but not N6-CEA was detected on paper chromatograms following acid hydrolysis of the DNA. When BPL-reacted single-stranded DNA was incubated at pH 11.7 (37 degrees C, 18 h) prior to acid hydrolysis, it was found that 1-CEA was completely converted to N6-CEA in DNA by Dimroth rearrangement, whereas no conversion occurred at pH 7.5. The extent of Dimroth rearrangement at various pHs and temperatures was determined for 1-CEA, 1-methyladenine (1-MeA), 1-(2-carboxyethyl)-deoxyadenosine-5'-monophosphoric acid (1-CEdAdo5'P) and the phosphodiester 5'-O-(2-carboxyethyl)phosphono-1-(2-carboxyethyl)deoxyadenosine (1-CE-Ado-5'-P-CE).  相似文献   

7.
The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed from hypoxanthine was converted into AMP and GMP, which were then catabolized to adenine and guanosine respectively. Guanine was mainly deaminated to xanthine and also incorporated into nucleic acids via GTP. Increased RNA synthesis in the protoplasts resulted in enhanced incorporation of adenine and guanine, but not of hypoxanthine and adenosine, into the nucleic acid fraction. The overall pattern of purine-nucleotide metabolic pathways in protoplasts of tobacco leaf mesophyll is proposed.  相似文献   

8.
Abstract

Cyclopropyl carbocyclic nucleosides have been synthesized from the key intermediate 2 which was converted to the mesylated cyclopropyl methyl alcohol 3. Condensation of compound 3 with various purine and pyrimidine bases gave the desired nucleosides. All synthesized nucleosides were evaluated for antiviral activity and cellular toxicity. Among them adenine 22 and guanine 23 derivatives showed moderate antiviral activity against HIV-1 and HBV. None of the other compounds showed any significant antiviral activities against HIV-1, HBV, HSV-1 and HSV-2 in vitro up to 100μM.  相似文献   

9.
A new pathway of NAD+ synthesis from anthranilic acid was found in the livers of rats. Starting from [carboxyl-14C]anthranilic acid, radioactive NAD+ and NADP+ were produced as judged by Dowex-1 X 8-formate column chromatography followed by radiochromatography. Several intermediate compounds, such as quinolinic acid, nicotinic acid mononucleotide, and nicotinic acid adenine dinucleotide were also identified with the aid of various chromatographic techniques. In the experiments with liver microsomal hydroxylation systems, anthranilic acid was converted into not only 5-hydroxyanthranilic acid but also 3-hydroxyanthranilic acid.  相似文献   

10.
Abstract

The acyclic nucleotide analogue (R,S)-9-[1-(2-hydroxyethylthio)-2-phosphonylethyl] adenine [HETPEA, 4] was prepared by coupling the adenine potassium salt with diethyl ethynylphosphonate followed by condensation of the product with 2-mercaptoethanol.  相似文献   

11.
2,4-O-Benzylidene-L-xylose was converted via a Wittig reaction into Z-2,4-O-benzylidene-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-++ +enitol (17), which, on hydrogenation, gave 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo- hexitol (33). tert-Butyldimethylsililation of the primary hydroxyl group of 33, followed by 4-methoxybenzylation, and desilylation afforded 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-2,3,4-tri-O-(4-methoxybenzyl)-D-xyl o- hexitol (54). A Mitsunobu-type reaction of 54 replaced HO-1 by cyanide to give, after hydrolysis and hydrogenolysis, 2,6,7-trideoxy-7-C-(2,4- dichlorophenyl)-D-xylo-heptono-1,4-lactone (55). Mesylation of 33 and then acetylation gave 2,3,4-tri-O-acetyl-5,6-dideoxy- 6-C-(2,4-dichlorophenyl)-1-O-methanesulfonyl-D-xylo-hexitol (63), which was converted via its 1-thiobenzoate into bis[1,5,6-trideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hexitol] 1,1'-disulfide (65). Acetylation of 65, followed by permanganate oxidation and deacetylation, afforded sodium 6-(2,4-dichlorophenyl)-D-xylo- 2,3,4-trihydroxy-hexanesulfonate (67). Both 57 (obtained from 55 by hydrolysis with NaOH) and 67 are weak inhibitors of HMG-CoA reductase.  相似文献   

12.
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate.  相似文献   

13.
Seventeen DL-amino acids labeled with a fluorescent chiral labeling reagent, R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole (R(-)-DBD-PyNCS), were separated by reversed-phase chromatography and detected fluorometrically at 550 nm (excitation at 460 nm). The reagent reacted with amino functional group in dl-amino acids under basic medium. The thiocarbamoyl derivatives were converted to thiohydantoin via thiazolinone in trifluoroacetic acid (TFA) solution. The epimerization ratios during the reaction of the cyclization were less than 37% in all dl-amino acids tested. The resulting thiohydantoin derivatives of individual dl-amino acids were completely separated with isocratic elutions using acidic mobile phase involving 0.1% TFA. The separations of the thiohydantoins yielded from acidic, basic, neutral, hydroxyl, and aromatic amino acids were good enough for the identification of dl-amino acid. The method using the reagent was adopted to identification of dl-amino acid sequences in eight peptides. The separation and identification of the thiohydantoin derivatives liberated from the peptides labeled were performed by the isocratic elutions. The applicability of the proposed procedure to sequential analysis of peptide was demonstrated with [D-Ala(2)]-leucine enkephalin, [D-Ala(2)]-deltorphin II, d-Phe-Met-Arg-Phe-amide, and Phe-D-Met-Arg-Phe-amide. D-Ala, D-Phe, and D-Met in the peptides were positively identified with the proposed procedures. [L-Ala(2)]-leucine enkephalin, beta-lipotropin, Asp-Ser-Asp-Pro-Arg, and Pro-Asp-Val-Asp-His-Val-Phe-Leu-Arg-Phe-amide were also analyzed as the references without D-amino acid.  相似文献   

14.
A new and more efficient method is presented for the synthesis of 13C(8)-enriched adenine. In addition, we present for the first time the synthesis of 13C(8)-enriched 2-aminopurine and purine. All three analogues have been converted to the corresponding ribonucleosides. The adenine analogue has been further converted to the 2'-deoxy-nucleoside and incorporated into a synthetic oligonucleotide. Data is presented demonstrating the utility of 13C-enrichment in heteronuclear isotope-edited NMR spectra.  相似文献   

15.
Methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside (3) was obtained in three steps from D-ribose. Exchange of the isopropylidene group for benzoate groups and acetolysis gave 1-O-acetyl-2,3-di-O-benzoyl-5-deoxy-5-iodo-D-ribofuranose which was coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method to afford the blocked nucleoside. Treatment with 1,5-diazabicyclo[5.4.0]undec-5-ene in N,N-dimethylformamide and removal of the blocking groups have 9-(5-deoxy-beta-D-erythro-pent-4-enofuranosyl)adenine (9). A similar route starting from methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-alpha-D-lyxofuranoside (14) afforded the enantiomeric nucleoside, 9-(5-deoxy-beta-L-erythro-pent-4-enofuranosyl)adenine (20). Methyl 2,3-O-isopropylidene-alpha-D-mannofuranoside was treated with sodium periodate and then with sodium borohydride to give methyl 2,3-O-isopropylidene-alpha-D-lyxofuranoside (11). Acid hydrolysis afforded D-lyxose. Tosylation of 11 gave methyl 2,3-O-isopropylidene-5-O-p-tolylsulfonyl-alpha dp-lyxofuranoside (12) which was converted into 14 with sodium iodide in acetone. Reduction of 12 gave methyl 5-deoxy-2,3-O-isopropylidene-alpha-D-lyxofuranoside which was hydrolyzed to give 5-deoxy-D-lyxose.  相似文献   

16.
9-(3-Phosphonomethoxyprop-1-en-yl)adenine (Z)- and (E)-isomers were synthesized. The stereoselectivity of double bond formation was studied by variation of sulfonyl groups. The resulting phosphonates exhibited a moderate antiherpetic activity in a culture of Vero cells infected with herpes simplex type 1 virus. The Z-isomer was shown to be more effective inhibitor of virus reproduction in the case of both wild and acyclovir-resistant strain.  相似文献   

17.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

18.
Abstract

New analogues of antiviral agents 9-(2, 3-dihy-droxyproply) adenine (DHPA, 1a.) and 9-(2-hydroxyethoxymethyl) guanine (acyclovir, Ib) - compounds Ic and Id were prepared and their biological activity was investigated. Racemic 1, 2, 4-butanetriol (2) was converted to the corresponding benzylidene derivative (3a) by acetalation with benzalde-hyde and triethyl orthoformate. Acetal 3a and p-toluene- sul-fonyl chloride in pyridine gave the corresponding p-toluenes fonate 3b. Alkylation of adenine 5a via sodium salt of 5a with 3b in dimethylformamide or in the presence of tetra-n-butylammonium fluoride in tetrahydrofuran gave intermediate 6a. Reaction of 2-amino-6-chloropurine (5b) with 3b effected by K2CO3 in dimethylsulfoxide gave compound 6b and a smaller amount of 7-alkylated proauct 7. A similar transformation catalyzed by tetra-n-butylammonium fluoride afforded only intermediate 5b. Acid-catalyzed de-protection (hydrolysis) of 6b and 6a gave the title compounds Ic and Id. The S-enantiomer of Ic was deaminated with adenosine deaminase. Our results argue against the presence of a methyl group-binding site of adenosine deaminase. Compounds Ic and Id exhibited little or no activity in antiviral assays with several DNA and RNA viruses.  相似文献   

19.
Synthesis of novel NAD(+) analogues that cannot be phosphorylated by NAD kinase is reported. In these analogues the C2' hydroxyl group of the adenosine moiety was replaced by fluorine in the ribo or arabino configuration (1 and 2, respectively) or was inverted into arabino configuration to give compound 3. Compounds 1 and 2 showed inhibition of human NAD kinase, whereas analogue 3 inhibited both the human and Mycobacterium tuberculosis NAD kinase. An uncharged benzamide adenine dinucleotide (BAD) was found to be the most potent competitive inhibitor (K(i)=90 microM) of the human enzyme reported so far.  相似文献   

20.
We have studied the hydration and dynamics of RNA C2'-OH in a DNA. RNA hybrid chimeric duplex [d(CGC)r(aaa)d(TTTGCG)](2). Long-lived water molecules with correlation time tau(c) larger than 0.3 ns were found close to the RNA adenine H2 and H1' protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA-DNA junction but not to the other two thymine bases (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA-DNA junction adopts an O4'-endo sugar conformation (intermediate between B-form and A-form), while the other DNA residues including 3C in the DNA-RNA junction, adopt C1'-exo or C2'-endo conformations (in the B-form domain). Based on the NOE cross-peak patterns, we have found that RNA C2'-OH tends to orient toward the O3' direction, forming a possible hydrogen bond with the 3'-phosphate group. The exchange rates for RNA C2'-OH were found to be around 5-20 s(-1), compared to 26.7(+/-13.8) s(-1) reported previously for the other DNA.RNA hybrid duplex. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)](2), which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The distinct hydration patterns of the RNA adenine H2 and H1' protons and the DNA 7T methyl group in the hybrid segment, as well as the orientation and dynamics of the RNA C2'-OH protons, may provide a molecular basis for further understanding the structure and recognition of DNA.RNA hybrid and chimeric duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号