首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The enzymatic activities of glyceraldehyde-3-phosphate dehydrogenase, octopine dehydrogenase and lactate dehydrogenase were determined fromLoligo vulgaris. Octopine dehydrogenase displays the highest activity yet recorded for this enzyme, exceeding glyceraldehyde-3-phosphate dehydrogenase sixfold and lactate dehydrogenase 365-fold (Table 1).During jet propulsion swimming octopine accumulates instead of lactate (Table 2), while phosphoarginine, the phosphagen of the squid, is depleted (Table 3).The formation of octopine is discussed in relation to anaerobic metabolism which might occur during burst activity in cephalopods.The following abbreviations are used AK arginine kinase (2.7.3.3) - GAPDH glyceraldehyde-3-phosphate dehydrogenase (1.2.1.12) - LDH L-lactate - NAD oxidoreductase (1.1.1.27) - ODH octopine - NAD oxidoreductase (1.5.1.11) - DTT dithiothreitol - dw dry weight (about 20% of the fresh weight) This investigation was generously supported by The Deutsche Forschungsgemeinschaft grant No.: (Ze 40/13)  相似文献   

2.
Summary Energy metabolism during anaerobiosis was investigated in the isolated posterior adductor muscle of the sea mussel. Metabolism appeared to be similar to that observed in the intact organism. Glycogen and aspartate are simultaneously utilized and levels of alanine, succinate, strombine and octopine increase. The sum of the adenylates remains constant, whereas phosphoarginine is dephosphorylated. The influence of iodoacetate, aminooxyacetate and hadacidin, inhibitors of glycolysis, transamination and purine nucleotide cycle, respectively, on the utilization of substrates and the interconversion of metabolites has been studied. The results suggest that the purine nucleotide cycle is not involved in the inverse correlation of changes in levels of aspartate and alanine, but that this exclusively depends on transamination reactions. Pyruvate (required for alanine formation) arises about equally from glycolysis and aspartate decarboxylation. When the utilization of aspartate is blocked by aminooxyacetate, glycolytically formed pyruvate is metabolized by reductive condensation with glycine and arginine to yield strombine and octopine. Under this condition phosphoarginine is dephosphorylated at a faster rate in order to maintain the energy status of the cell.Abbreviations Ac acetate - AEC Atkinson energy charge - Ala alanine - Asp aspartate - Glu glutamate - Lac lactate - Mal malate - Oct octopine - PA phosphoarginine - Prop propionate - Pyr pyruvate - Str strombine - Suc succinate  相似文献   

3.
Summary In order to elucidate the regulatory parameters which determine multiple opine formation in marine invertebrates, anaerobiosis was induced in 25 species from several phyla by stimulating the animals to vigorous muscular activity or by subjecting them to environmental hypoxia. The quantity of glycolytic end products and the corresponding amino acids were measured. In a second set of experiments the amounts of substrates and products of the opine dehydrogenase reactions in the isolated introvert retractor muscle (IRM) ofSipunculus nudus were determined in both situations.During environmental hypoxia opines accumulated according to the contents of the corresponding amino acids. Mass action ratios (MAR) of the opine dehydrogenase reactions in the isolated IRM were in the range of control values (octopine dehydrogenase 1.9·1011 mol–2·l2, strombine dehydrogenase 2.2·1010 mol–2·l2). During muscular activity those opines accumulated preferentially which corresponded to the highest opine dehydrogenase activities. In the isolated IRM only octopine accumulated during contractile activity; the MAR of the octopine dehydrogenase reaction was near the control value while the MAR of the strombine dehydrogenase reaction deviated by a factor of 9.The results indicate that during environmental hypoxia the opine dehydrogenases present in a tissue catalyze near equilibrium and the relative amount of opines accumulated is dictated by the concentration of the corresponding amino acids. During muscular activity only those opine dehydrogenases catalyze near equilibrium which are present in sufficiently high activities to keep pace with an increased glycolytic flux. Therefore, different opines may accumulate in the same animal during muscular activity and during environmental hypoxia.  相似文献   

4.
A comparison of branchial enzyme profiles indicates that the gills of Periophthalmodon schlosseri would have a greater capacity for energy metabolism through glycolysis than those of Boleophthalmus boddaerti. Indeed, after exposure to hypoxia, or anoxia, there were significant increases in the lactate content in the gills of P. schlosseri. In addition, exposure to hypoxia or anoxia significantly lowered the glycogen level in the gills of this mudskipper. It can be deduced from these results that the glycolytic flux was increased to compensate for the decrease in ATP production through anaerobic glycolysis. Different from P. schlosseri, although there was an increase in lactate production in the gills of B. boddaerti exposed to hypoxia, there was no significant change in the branchial glycogen content, indicating that a reversed Pasteur effect might have occurred under such conditions. In contrast, anoxia induced an accumulation of lactate and a decrease in glycogen in the gills of B. boddaerti. Although lactate production in the gills of these mudskippers during hypoxia was inhibited by iodoacetate, the decreases in branchial glycogen contents could not account for the amounts of lactate formed. The branchial fructose-2,6-bisphosphate contents of these mudskippers exposed to hypoxia or anoxia decreased significantly, leaving phosphofructokinase and glycolytic rate responsive to cellular energy requirements under such conditions. The differences in response in the gills of B. boddaerti and P. schlosseri to hypoxia were possibly related to the distribution of phosphofructokinase between the free and bound states.Abbreviations ADP adenosine diphosphate - ALD aldolase - ALT alanine transaminase - AST aspartate transaminase - ATP adenosine triphosphate - CS citrate synthase - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F6P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - FBPase fructose-1,6-bisphosphatese - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - -GDH -glycerophosphate dehydrogenase - GPase glycogen phosphorylase - HK hexokinase - HOAD 3-hydroxyacyl-CoA dehydrogenase - IDH isocitrate dehydrogenase - IOA iodoacetic acid - LDH lactate dehydrogenase - LO lactate oxidizing activity - MDH malate dehydrogenase - 3-PG 3-phosphoglyceric acid - PEP phosphoenolpyruvate - PEPCK phosphoenolpyruvate carboxykinase - PGI phosphoglucose isomerase - PGK phosphoglycerate kinase - PFK 6-phosphofructo-1-kinase - PIPES piperazine-N, N-bis-(2-ethanesulphonic acid) - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride - PR pyrurate reducing activity - SE standard error - SW seawater - TPI triosephosphate isomerase  相似文献   

5.
Chronic exposure of mammals to hypoxia induces a state of anorexia. We aimed to determine the role played by diet restriction in the alterations of myocardial energy metabolism occurring under chronic hypoxia in order to detect the specific effects of hypoxia per se.Adult female rats were exposed to normobaric hypoxia (Fi O2 = 0.10) for three weeks; pair-fed rats, kept under normoxic conditions, received the same amount of food as hypoxic rats. The oxidative capacity of myocardial ventricles and some skeletal muscles was evaluated using permeabilized fibers. Several metabolic enzyme activities were measured on extracts from myocardium and soleus.Diet restriction increased the activity of lactate dehydrogenase in both ventricles while it augmented phosphofructokinase and pyruvate kinase activities only in the left ventricle and depressed the respiratory rate in the right ventricle only.Hypoxia per se induced a rise in hexokinase activity in all studied oxidative muscles and a fall of hydroxy-acyl CoA-dehydrogenase activity in both myocardial ventricles. The respiratory rate and the citrate synthase activities were unaffected by hypoxia.We conclude that chronic hypoxia per se leads to specific alterations in myocardial metabolism that could favor the use of exogenous glucose at the expense of free fatty acids without any change in the oxidative capacity.  相似文献   

6.
Summary In animals, various organic acids are accumulated during hypoxia or anoxia as products of anaerobic energy metabolism. The diversity of such acids is largest in marine invertebrates where succinate, propionate, acetate, lactate, alanine, octopine, strombine, and alanopine, are produced mainly from glycogen and aspartate. The effect of these substances on the acid-base status was assessed by a theoretical analysis of the respective metabolic pathways. This resulted in a general rule which was applied to evaluate the proton balance of the reactions in energy metabolism: net changes in the number of carboxyl groups or changes in the degree of dissociation of other groups (e.g. phosphate or ammonia) determine the net amount of H+ ions released or bound by the substrates and the metabolic end products.For marine invertebrates the results of the analysis can be summarized as follows: In glycogenolysis one mol of protons per mol of end products is released during cytosolic glycolysis, independent of the type of metabolic end product (lactate, octopine, alanopine, strombine, or alanine). The same applies for mitochondrial production of propionate and acetate, whereas formation of succinate results in dissociation of two mol H+ per mol. Fermentation of aspartate, however, diminishes the amount of protons which is produced in the succinate-propionate pathway. Net metabolisation of Mg ATP2– yields extra protons, whereas the cleavage of phosphagens (e.g. creatine phosphate, arginine phosphate) consumes protons.Additionally the break-down of energy-rich phosphates to inorganic phosphate has to be taken into account because of the shift of the intracellular buffer curve caused by changes of the respective effective pK values.  相似文献   

7.
Summary In northern and southern California populations of the plumose sea anemone,Metridium senile, octopine dehydrogenase occurs in two allozymic forms and these forms are distributed in a highly population-specific manner; the frequency of the slow allele (ODH 100) is 0.875 in the northern (Bodega Bay) population while the frequency of the fast allele (ODH 103) in the southern population (Santa Barbara) is 0.125. Purification techniques resulted in an increase in purity of approximately 400 fold. The enzyme is a monomer ofM r 35,000 to 40,000. Though there is some flexibility in the amino acid substrate which the enzyme uses (arginine and lysine react similarly), the specificity for the keto acid is limited to pyruvate.The kinetic characters of the two allozymes ofMetridium senile ODH are very different with respect to type of substrate saturation (Fig. 4 and 5) and apparent Michaelis constants (K m) for pyruvate, lysine, arginine, and octopine (Table 5), product inhibition by octopine (Fig. 2), and optimal activity with respect to pH (Fig. 3). The properties of the slow and fast allozymes resemble the kinetic properties of cephalopod brain and muscle tissue-specific isozymes (Table 7). The kinetic data indicate that the slow allozyme would not allow a great deal of accumulation of octopine in vivo, while the fast allozyme is poised markedly towards octopine production.When the data presented in this study are compared to various physiological findings of other investigators, it becomes evident that the probable in vivo function of ODH in sea anemones is to act, in a manner analogous to vertebrate LDH, during the short-term anaerobiosis associated with muscle contraction and locomotion. The population-specific distribution and the different functional properties of the two ODH allozymes are most likely related to the different degree of tidal exposure which the two populations experience in nature. Only the slow allozyme possesses the regulatory properties which would allow a shift to the alternative anaerobic pathways utilized during these longer exposure periods.Abbreviations ODH octopine dehydrogenase - LDH lactate dehydrogenase - PHI phosphohexose isomerase  相似文献   

8.
Summary The anaerobic metabolism ofNereis diversicolor M. was studied during various periods of experimental anaerobiosis.The degradation of glycogen is shown to be the main source of anaerobic energy production. During first hours of anaerobiosis, aspartate, in addition to glycogen, is metabolized in considerable quantities.Five acids were found to accumulate as end-products: alanine, D-lactate, succinate, acetate and propionate (Table 2).Alanine is accumulated only during the first hours of anaerobiosis. The increase in alanine is correlated with a decrease in aspartate.D-Lactate is the main end-product during the first 24 h of anaerobiosis, and continues to be produced even during prolonged anaerobiosis. In accordance with lactate production,Nereis diversicolor possesses a high glycolytic capacity (Table 4).The major end-products of long term fermentation are propionate and acetate. In contrast to other end-products, these acids are excreted in substantial amounts.Abbreviations GAPDH glyceraldehydephosphate dehydrogenase, EC 1.2.1.12 - LDH lactate dehydrogenase, EC 1.1.1.27 - GOT aspartate aminotransferase, EC 2.6.1.1 - GPT alanine aminotransferase, EC 2.6.1.2 - MDH malate dehydrogenase, EC 1.1.1.37 Supported by Deutsche Forschungsgemeinschaft (Gr 456/5 and Gr 456/6)  相似文献   

9.
Summary Carbohydrate metabolism of the sea cucumber,Sclerodactyla briareus, was investigated in an effort to find metabolic pathways that might be useful during exposure to hypoxic conditions. The utilization of glucose-U-14C by in vitro longitudinal muscle preparations was not enhanced during exposure to reduced oxygen tensions. Alanine was the most highly labelled compound regardless of incubation conditions. Hypoxic exposure resulted in a four-fold increase in radioactivity in lactate, and decreased radioactivity in alanine, glutamate and aspartate. Succinate and volatile acids were not observed to be significant end products of anaerobic glycolysis inS. briareus longitudinal muscle. The relative activities of a number of glycolytic and gluconeogenic enzymes in longitudinal muscle were consistent with the observations of isotope distribution. Levels of lactate in muscle tissue of sea cucumbers exposed to 24 and 48 h of hypoxia were on the average 20 times higher than the values for aerobic controls. The kinetic characteristics of longitudinal muscle lactate dehydrogenase coupled with hypoxic acid release and the lack of an oxygen debt phenomenon by in vitro longitudinal muscle preparations indicate that lactate may not be appreciably oxidized in this tissue but is released into the body fluids. Unlike many anoxia-tolerant invertebrates which produce primarily succinate during exposure to reduced oxygen tensions, specimens ofSclerodactyla briareus produce lactate as a major glycolytic end product.Abbreviations AAT alanine aminotransferase - ADP adenosine-5-diphosphate - DHAP dihydroxyacetone phosphate - IDP inosine-5-diphosphate - LDH lactate dehydrogenase - MDH malate dehydrogenase - NAD nicotinamide adenine dinucleotide - NADP nicotinamide adenine dinucleotide phosphate - PEPCK phosphoenolpyruvate carboxykinase - PK pyruvate kinase A brief account of some of this work was published inAmerican Zoologist 15, 808 (1975). This work is derived from portions of a dissertation submitted to the University of Rhode Island by the senior author in partial fulfillment of the degree of Doctor of Philosophy. Partial support of this research was provided by a Society of the Sigma Xi Grant-in-Aid for Research  相似文献   

10.
Summary The interrelationships of carbohydrate and amino acid metabolism during anaerobiosis were investigated in the ventricle of the intertidal oyster,Crassostrea gigas. While the ventricle accumulates alanine and succinate in a 21 ratio during anoxia, these end products appear to arise from different precursors. Thus glucose-14C is metabolized mainly to alanine-14C (55% of glucose carbon appears in alanineversus 3% in succinate) by the anoxic ventriclein vitro while succinate-14C is the principle end product of aspartate-14C catabolism. Glutamate-14C is poorly metabolized by the anoxic ventricle, and correspondingly, while ventricular aspartate concentrations drop during anoxia, those of other amino acids do not. A metabolic scheme coupling glucose and aspartate catabolism in this facultative anaerobe is proposed. The detection of a third, as yet incompletely identified, anaerobic end product produced by the ventricle is reported.  相似文献   

11.
Summary Tench (Tinca tinca) were acclimated to either aerated (P O 2 17.6 KPa) or hypoxic (P O 2 1.5 KPa) water for 6 weeks.Acclimation to hypoxia resulted in a decrease in mitochondrial volume fraction in both slow (22.9 to 15.0 %) and fast glycolytic (4.5 to 1.8 %) myotomal muscles fibres (P<0.01).Intermyofibrillar mitochondrial populations (4.4 to 1.2% slow; 0.6 to 0.04% fast fibres) were affected to a greater extent than those in the subsarcolemmal zone (18.5 to 13.8% slow; 3.9 to 1.8% fast fibres). After acclimation to hypoxia, cytochrome-oxidase activities decreased by 31 and 33 % in slow and fast fibres, respectively, but were maintained in the liver.Fibre size remained unchanged and actively differentiating fibres were observed in muscles from both groups of fish. Hypoxia resulted in a significant increase in myofibrillar volume fraction in both slow (43.1 to 56.1 %) and fast glycolytic fibres (73.1 to 82.7%) (P<0.05).Glycogen concentrations (mg/100g tissue) for liver (6616) slow muscle (1892) and fast muscle (334) were similar for fish acclimated to aerated or hypoxic water. Acclimation to hypoxia increased carnitine palmitoyl transferase activity (moles substrate utilised g·dry wt-1 min-1) in slow (0.42 to 1.1), fast glycolytic muscle (<0.01 to 0.15) and liver (1.1 to 3.7) indicating an enhanced capacity for fatty acid oxidation.Phosphofructokinase activities of fast glycolytic fibres were similar in fish acclimated to either aerated or hypoxic water, consistent with an unaltered capacity for anaerobic glycogenolysis. Hexokinase activities (moles substate utilised, g·dry wt-1 min-1) decreased in fast fibres (1.2 to 0.4) but were maintained in the slow muslce (2.1 to 2.5) and liver (4.5 to 4.8) of hypoxic fish. The activities of phosphofructokinase in slow muscle and phosphofructokinase, pyruvate kinase and lactate dehydrogenase in liver were two times higher in fish acclimated to hypoxia. An enhanced capacity for glycolysis in these tissues may reflect a reduced threshold for anaerobic metabolism during activity and/or an adaptation for acute exposure to anoxia in fish acclimated to hypoxia.Abbreviations/Glossary CO cytochrome oxidase activity - CPT carnitine palmitoyltransferase activity - HK hexokinase activity - LDH lactate dehydrogenase activity - PFK phosphofructokinase activity - PK pyruvate kinase activity - Vv volume fractions of cell components - normoxic fish acclimated to aerated water - hypoxic fish acclimated to reduced oxygen tensions - P O 2 partial pressure of oxygen tension A preliminary account of part of this work was presented at theXth European Meeting on Muscle and Cell Motility held at Galway, Ireland, in September 1981  相似文献   

12.
Summary Metabolic rate depression is a key survival strategy used by facultative anaerobes for enduring periods of environmental anoxia. In determining the molecular mechanisms of this phenomenon the role of enzyme binding to the subcellular particulate fraction was assessed in muscle tissues (ventricle and foot) of the anoxia tolerant marine gastropod,Busycotypus canaliculatum. Using two different methodologies for preparation, soluble versus particulate fractions of muscle were separated and assayed for their contents of eight glycolytic enzymes. Preparations from anoxic animals showed decreased percentages of enzymes associated with the particulate fraction as compared to controls; this was particularly pronounced for hexokinase and aldolase. A return to aerated seawater reversed this effect, and increased enzyme binding to the particulate fraction. The absence of a Pasteur effect in animal facultative anaerobes may be due, in part, to an anoxia-induced dissociation of enzymes from the particulate fraction of the cell promoting a decrease in glycolytic rate.Abbreviations HK hexokinase - PFK phosphofructokinase - GPDH glycerol-3-phosphate dehydrogenase - PK pyruvate kinase - LDH lactate dehydrogenase - ADH alanopine dehydrogenase - ODH octopine dehydrogenase - ALD aldolase - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(2-amino ethylether)-N,N-tetraacetic acid  相似文献   

13.
Common carp (at 20°C) and rainbow trout (at 15°C) were fitted with an indwelling cannula in the dorsal aorta. The fish were exposed to a controlled decline of waterpO2 followed by 90 min deep hypoxia at 0.3 kPa (carp) or 4.8 kPa (trout). Thereafter, normoxic recovery was monitored in both species for 48 h. At regular intervals blood samples were analysed for glucose, lactate, free fatty acids, adrenaline, noradrenaline and cortisol. The oxygen restriction was maximal in both species and resulted in a significant increase of plasma lactate levels. In carp, adrenaline, noradrenaline and cortisol levels increased to 2, 50, and 753 ng·ml-1 respectively during anoxia, whereas in trout these hormones increased to 12, 8 and 735 ng·ml-1 respectively during hypoxia. In hypoxic trout, the plasma levels of glucose (3 mol·l-1) were increased modestly whereas levels of free fatty acids (0.25 mmol·l-1) were decreased to 0.15 mmol·l-1. In carp, however, a marked and prolonged hyperglycaemia (from 5 to 10 mmol·l-1) and a significant continuous depression of plasma levels of free fatty acids (from 0.4 to 0.2 mmol·l-1) were observed indicating a difference in metabolic organization. It is suggested that hyperglycaemia is likely to be the result of hepatic glycogenolysis, stimulated by circulating catecholamines and a stimulation of gluconeogenesis by cortisol during recovery. The mechanism for the decline of plasma levels of free fatty acids is most probably a reduction of lipolytic activity, which appears to be an adaptation to hypoxia.  相似文献   

14.
Flood tolerance of woody plants has been attributed to internal oxygen diffusion from shoot to root, metabolic adaptation within the root, or both. The purpose of this study was to compare several biochemical and physiological responses of birch roots to hypoxia in order to determine the nature of root metabolic adaptation to low oxygen tension. One-year-old seedlings of flood-tolerant river birch (Betula nigra L.) and flood-intolerant European birch (Betula pendula Roth) were transferred to solution culture, and the solutions were bubbled with air or nitrogen. After 18 days of hypoxia, total adenosine phosphate and ATP contents of river birch roots were 35% and 23% of controls, respectively, whereas those of European birch roots were 13% and 8%. Adenylate energy charge of river birch roots decreased between 6 and 12 days of hypoxia. In contrast, energy charge of European birch roots decreased after only 1 day of hypoxia. In vitro activity of cytochrome c oxidase and oxygen consumption capacity of excised roots from both birch species decreased under hypoxia. In vitro activity of alcohol dehydrogenase from roots of both species increased after 1 day of hypoxia. However, alcohol dehydrogenase activity from river birch roots increased 25-fold after 6 days of hypoxia, whereas that from European birch decreased back to control levels. Hypoxia decreased malate content of roots from both species. Metabolic adaptation within the root, rather than internal oxygen diffusion, appears to be responsible for the relative tolerance of river birch to hypoxia.  相似文献   

15.
We examined the role of alcohol dehydrogenase (ADH) in the metabolism and survival of hypoxic maize (Zea mays L.) root tips. The dependence of the rate of ethanolic fermentation, cytoplasmic pH, and viability on the activity of ADH in maize root tips during extreme hypoxia was determined. Maize lines with ADH activities differing over about a 200-fold range were studied. Effects of genetic background were controlled by comparing pairs of F4 progeny of crosses between mutant (low ADH activity) and reference inbred lines. The capacity of hypoxic root tips to perform ethanolic fermentation exhibited a dependence on ADH activity only at activities found in Adh 1 nulls. The ability of maize root tips to withstand prolonged and extreme hypoxia was like-wise independent of ADH activity, except at the lowest activities. Root tips that exhibited lower tolerance of hypoxia had more acidic cytoplasm during extreme hypoxia. We conclude that the activity of ADH in normal maize root tips does not limit the capacity for energy production via fermentation, and does not determine viability under extreme hypoxia. The significance of the induction of ADH activity in plants by hypoxia is discussed.  相似文献   

16.
In Arctica islandica, a long lifespan is associated with low metabolic activity, and with a pronounced tolerance to low environmental oxygen. In order to study metabolic and physiological responses to low oxygen conditions vs. no oxygen in mantle, gill, adductor muscle and hemocytes of the ocean quahog, specimens from the German Bight were maintained for 3.5 days under normoxia (21 kPa=controls), hypoxia (2 kPa) or anoxia (0 kPa). Tissue levels of anaerobic metabolites octopine, lactate and succinate as well as specific activities of octopine dehydrogenase (ODH) and lactate dehydrogenase (LDH) were unaffected by hypoxic incubation, suggesting that the metabolism of A. islandica remains fully aerobic down to environmental oxygen levels of 2 kPa. PO(2)-dependent respiration rates of isolated gills indicated the onset of metabolic rate depression (MRD) below 5 kPa in A. islandica, while anaerobiosis was switched on in bivalve tissues only at anoxia. Tissue-specific levels of glutathione (GSH), a scavenger of reactive oxygen species (ROS), indicate no anticipatory antioxidant response takes place under experimental hypoxia and anoxia exposure. Highest specific ODH activity and a mean ODH/LDH ratio of 95 in the adductor muscle contrasted with maximal specific LDH activity and a mean ODH/LDH ratio of 0.3 in hemocytes. These differences in anaerobic enzyme activity patterns indicate that LDH and ODH play specific roles in different tissues of A. islandica which are likely to economize metabolism during anoxia and reoxygenation.  相似文献   

17.
It is shown that preliminary taurine treatment prevents the disturbances of energy metabolism in the brain, heart and liver tissues of Wistar rats with acute hypoxic hypoxia. Administration of taurine restored to normal the parameters of adenine pool: the concentration of ATP increased within the cytoplasm, while that of ADP and AMP diminished; mitochondrial respiration proceeded more rapidly; the concentrations of pyruvate and malate decreased; isocitrate dehydrogenase activity, P/O and NAD/NADH ratios increased. Taurine treatment resulted in a decreased level of lipid peroxides in the rat tissues with hypoxia. The role of intracellular calcium content and biomembranes structure changes as the mechanisms of taurine action on energy metabolism and lipid peroxidation is discussed.  相似文献   

18.
The effect of hypoxia on root development and carbon metabolism was studied using potato (Solanum tuberosum L.) plants as a model system. Hypoxia led to a cessation of root elongation, and finally to the death of meristematic cells. These changes were accompanied by a 4- to 5-fold accumulation of hexoses, suggesting that insufficient carbohydrate supply was not the cause of cell death. In addition, prolonged hypoxia (96 h) resulted in a 50% increase in activity of most glycolytic enzymes studied and the accumulation of glycerate-3-phosphate and phosphoenolpyruvate. This indicates that endproduct utilisation may restrict metabolic flux through glycolysis. As expected, the activities of alcohol dehydrogenase (EC 1.1.1.1) and pyruvate decarboxylase (EC 4.1.1.17) increased during hypoxia. Apart from the enzymes of ethanolic fermentation the activity of sucrose synthase (SuSy; EC 2.4.1.13) was enhanced. To investigate the in-vivo significance of this increase, transgenic plants with reduced SuSy activity were analysed. Compared to untransformed controls, transgenic plants showed a reduced ability to resume growth after re-aeration, emphasising the crucial role of SuSy in the toleration of hypoxia. Surprisingly, analysis of glycolytic intermediates in root extracts from SuSy antisense plants revealed no change as compared to wildtype plants. Therefore, limitation of glycolysis is most likely not responsible for the observed decreased ability for recovery after prolonged oxygen starvation. We assume that the function of SuSy during hypoxia might be to channel excess carbohydrates into cell wall polymers for later consumption rather than fuelling glycolysis. Received: 17 February 1999 / Accepted: 10 June 1999  相似文献   

19.
Decreases in Amino Acid and Acetylcholine Metabolism During Hypoxia   总被引:5,自引:4,他引:1  
Abstract: Hypoxia impairs brain function by incompletely defined mechanisms. Mild hypoxia, which impairs memory and judgment, decreases acetylcholine (ACh) synthesis, but not the levels of ATP or the adenylate energy charge. However, the effects of mild hypoxia on the synthesis of the glucosederived amino acids [alanine, aspartate, γ-amino butyric acid (GABA), glutamate, glutamine, and serine] have not been characterized. Thus, we examined the incorporation of [U-14C]glucose into these amino acids and ACh during anemic hypoxia (injection of NaNO2), hypoxic hypoxia (15 or 10% O2), and hypoxic hypoxia plus hypercarbia (15 or 10% O2 with 5% CO2). In general, the synthesis of the amino acids and of ACh declined in parallel with each type of hypoxia we studied. For example, anemic hypoxia (75 mg/kg of NaNO2) decreased the incorporation of [U-14C]glucose into the amino acids and into ACh similarly. [Percent inhibition: ACh (57.4), alanine (34.4), aspartate (49.2), GABA (61.9). glutamine (59.2), glutamate (51.0), and serine (36.7)]. A comparison of several levels (37.5, 75, 150, 225 mg/kg of NaNO2) of anemic hypoxia showed a parallel decrease in the flux of glucose into ACh and into the amino acids whose synthesis depends on mitochondrial oxidation: GABA (r= 0.98), glutamate (r= 0.99), aspartate (r= 0.96), and glutamine (r= 0.97). The synthesis of the amino acids not dependent on mitochondrial oxidation did not correlate as well with changes in ACh metabolism: serine (r= 0.68) and alanine (r= 0.76). The decreases in glucose incorporation into ACh and into the amino acids with hypoxic hypoxia (15% or 10% O2) or hypoxic hypoxia with 5% CO2 were very similar to those with the two lowest levels of anemic hypoxia. Thus, any explanation of the brain's sensitivity to a decrease in oxygen availability must include the alterations in the metabolism of the amino acid neurotransmitters as well as ACh.  相似文献   

20.
Water-deficit effects on carbon and nitrogen metabolism of pea nodules   总被引:7,自引:0,他引:7  
Two experiments were carried out to investigate the effects of water-deficit stress on carbon and nitrogen metabolism of Pisum sativum nodules. In the first experiment, leaf w was allowed to reach -1.0 MPa over a period of 14 d whilst in the second experiment -1.5 MPa was reached during the same time period. Nodule activities of phosphoenol pyruvate carboxylase, glutamine synthetase, alkaline invertase, pyruvate decarboxylase, alcohol dehdyrogenase, uridine pyro-phosphorylase, and malate dehydrogenase activities were not affected by water-deficit stress. In the first experiment (-1.0 MPa), sucrose synthase (SS), an enzyme which hydrolyses sucrose to support nodule metabolism, declined by 50% in activity and about 25% in content, according to Western immunoblot data. In the second experiment (-1.5 MPa), SS activity decreased by 75% together with glutamate synthase and aspartate aminotransferase which declined by 60% and 40%, respectively. Coincident with the decline of these activities, a dramatic increase in the nodule content of sucrose and a slight increase in the levels of total free amino acids were found. It has been recently suggested that the decline in SS activity and, therefore, a reduced potential to metabolize sucrose may be an important factor contributing to the overall response of soybean nodules to water stress. These results suggest that this observation may be also correct for temperate legumes with indeterminate nodules. However, in this latter case, the activity of some enzymes involved in nitrogen assimilation (glutamate synthase and aspartate aminotransferase) were also affected by water-deficit stress).Key words: Pisum sativum, water stress, nitrogen metabolism, nodule metabolism, pea, sucrose synthase.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号