首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fanconi anemia (FA) is a chromosome instability syndrome characterized by congenital abnormalities, cellular hypersensitivity to DNA crosslinking agents, and heightened cancer risk. Eight of the thirteen identified FA genes encode subunits of a nuclear FA core complex that monoubiquitinates FANCD2 and FANCI to maintain genomic stability in response to replication stress. The FA pathway has been implicated in the regulation of error-prone DNA damage tolerance via an undefined molecular mechanism. Here, we show that the FA core complex is required for efficient spontaneous and UVC-induced point mutagenesis, independently of FANCD2 and FANCI. Consistent with the observed hypomutability of cells deficient in the FA core complex, we also demonstrate that these cells are impaired in the assembly of the error-prone translesion DNA synthesis polymerase Rev1 into nuclear foci. Consistent with a role downstream of the FA core complex and like known FA proteins, Rev1 is required to prevent DNA crosslinker-induced chromosomal aberrations in human cells. Interestingly, proliferating cell nuclear antigen (PCNA) monoubiquitination, known to contribute to Rev1 recruitment, does not require FA core complex function. Our results suggest a role for the FA core complex in regulating Rev1-dependent DNA damage tolerance independently of FANCD2, FANCI, and PCNA monoubiquitination.  相似文献   

2.
Gurtan AM  D'Andrea AD 《DNA Repair》2006,5(9-10):1119-1125
The Fanconi anemia (FA) pathway consists of a unique, multi-subunit E3 ubiquitin ligase complex that is activated in a replication and DNA-damage dependent mechanism. This FA core complex possesses a putative helicase and an E3 ubiquitin ligase subunit, is assembled in both the nucleoplasm and in chromatin, and is required for the mono-ubiquitination of FANCD2, a downstream FA protein, following genotoxic stress. Clinically, absence of the FA pathway results in congenital defects, bone marrow failure, and cancer predisposition. At the cellular level, this pathway is required for chromosomal stability and cellular resistance to DNA interstrand crosslinkers (ICLs) such as mitomycin C (MMC). A general model has emerged for the FA pathway as an arm of the DNA-damage response following ICLs. This review will summarize the current understanding of the FA core complex and propose a model for its activity.  相似文献   

3.
4.
To generate high affinity antibodies during an immune response, B cells undergo somatic hypermutation (SHM) of their immunoglobulin genes. Error-prone translesion synthesis (TLS) DNA polymerases have been reported to be responsible for all mutations at template A/T and at least a fraction of G/C transversions. In contrast to A/T mutations which depend on PCNA ubiquitination, it remains unclear how G/C transversions are regulated during SHM. Several lines of evidence indicate a mechanistic link between the Fanconi Anemia (FA) pathway and TLS. To investigate the contribution of the FA pathway in SHM we analyzed FancG-deficient B cells. B cells deficient for FancG, an essential member of the FA core complex, were hypersensitive to treatment with cross-linking agents. However, the frequencies and nucleotide exchange spectra of SHM remained comparable between wild-type and FancG-deficient B cells. These data indicate that the FA pathway is not involved in regulating the outcome of SHM in mammals. In addition, the FA pathway appears dispensable for class switch recombination.  相似文献   

5.
Fanconi anemia (FA) is an autosomal recessive disease marked by congenital defects, bone marrow failure, and cancer susceptibility. FA cells exhibit a characteristic hypersensitivity to DNA crosslinking agents such as mitomycin C. The molecular mechanism for the disease remains elusive, but at least 6 FA proteins are known to be part of what is termed the FA core complex. We used affinity pulldown of FLAG-FANCA to pull down the FA complex from whole-cell extracts. Mass spectroscopy detected previously reported FA-binding proteins, including FANCA, FANCC, FANCG, cdc2, and GRP94, thus validating the approach. We further describe a method of purification of the FA core complex in an effort to find novel complex components and biochemical activity to define the function of the complex. By using conventional chromatographic fractionation of subcellular preparations, we report: (i) the FA core complex exists in a cytoplasmic form at 500-600 kDa; (ii) a larger, 750-kDa cytoplasmic form is seen only at mitosis; (iii) a nuclear form achieves a size of 2 megaDaltons; and (iv) a distinct 1-megaDalton FA core complex exists bound to chromatin that contains phosphorylated FANCA after undergoing DNA damage. We are continuing our analysis using mass spectroscopy in an effort to characterize novel binding proteins. These data will help define the biochemical role of the FA core complex in normal cell physiology as well as in the development of the FA disease state.  相似文献   

6.
Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.  相似文献   

7.
The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links. At the heart of this pathway is the monoubiquitination of the FANCI-FANCD2 (ID) complex by the multiprotein "core complex" containing the E3 ubiquitin ligase FANCL. Vertebrate organisms have the eight-protein core complex, whereas invertebrates apparently do not. We report here the structure of the central domain of human FANCL in comparison with the recently solved Drosophila melanogaster FANCL. Our data represent the first structural detail into the catalytic core of the human system and reveal that the central fold of FANCL is conserved between species. However, there are macromolecular differences between the FANCL proteins that may account for the apparent distinctions in core complex requirements between the vertebrate and invertebrate FA pathways. In addition, we characterize the binding of human FANCL with its partners, Ube2t, FANCD2, and FANCI. Mutational analysis reveals which residues are required for substrate binding, and we also show the domain required for E2 binding.  相似文献   

8.
9.
Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure, increased cancer risk and hypersensitivity to DNA cross-linking agents, implying a role for this pathway in the maintenance of genomic stability. The central player of the FA pathway is the multi-subunit E3 ubiquitin ligase complex activated through a replication- and DNA damage-dependent mechanism. A consequence of the activation of the complex is the monoubiquitylation of FANCD2 and FANCI, late term effectors in the maintenance of genome integrity. The details regarding the coordination of the FA-dependent response and the DNA replication process are still mostly unknown. We found, by yeast two-hybrid assay and co-immunoprecipitation in human cells, that the core complex subunit FANCF physically interacts with PSF2, a member of the GINS complex essential for both the initiation and elongation steps of DNA replication. In HeLa cells depleted for PSF2, we observed a decreased binding to chromatin of the FA core complex, suggesting that the GINS complex may have a role in either loading or stabilizing the FA core complex onto chromatin. Consistently, GINS and core complex bind chromatin contemporarily upon origin firing and PSF2 depletion sensitizes cells to DNA cross-linking agents. However, depletion of PSF2 is not sufficient to reduce monoubiquitylation of FANCD2 or its localization to nuclear foci following DNA damage. Our results suggest a novel crosstalk between DNA replication and the FA pathway.  相似文献   

10.
The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.  相似文献   

11.
12.
In DNA damage responses, the Fanconi anemia (FA) protein, FancD2, is targeted to chromatin and forms nuclear foci following its monoubiquitination, a process likely catalyzed by the FA core complex. Here, we show that a chicken FancD2-ubiquitin fusion protein, carrying a Lys-Arg substitution removing the natural monoubiquitination site (D2KR-Ub), could reverse cisplatin hypersensitivity and localize to chromatin in FANCD2-deficient DT40 cells. Importantly, the chromatin targeting was dependent on three core complex components as well as the hydrophobic surface of ubiquitin that may direct protein-protein interactions. Furthermore, a constitutively chromatin bound fusion of D2KR-histone H2B could complement cisplatin sensitivity in FANCD2- but not FANCC-, FANCG-, or FANCL-deficient cells. Thus these core complex components have an additional function in the DNA repair, which is independent of the monoubiquitination and chromatin targeting of FancD2. These results define functional consequences of FancD2 monoubiquitination and reveal previously hidden functions for the FA protein core complex.  相似文献   

13.
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.  相似文献   

14.
When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway.  相似文献   

15.
Chromatin assembly factor-1 (CAF-1) is essential for chromatin assembly in eukaryotes, and comprises three subunits of 150 kDa (p150), 60 kDa (p60), and 48 kDa (p48). We cloned and sequenced cDNA encoding the small subunit of the chicken CAF-1, chCAF-1p48. It consists of 425 amino acid residues including a putative initiation Met, possesses seven WD repeat motifs, and contains only one amino acid change relative to the human and mouse CAF-1p48s. The immunoprecipitation experiment followed by Western blotting revealed that chCAF-1p48 interacts with chicken histone deacetylases (chHDAC-1 and -2) in vivo. The glutathione S-transferase pulldown affinity assay revealed the in vitro interaction of chCAF-1p48 with chHDAC-1, -2, and -3. We showed that the p48 subunit tightly binds to two regions of chHDAC-2, located between amino acid residues 82-180 and 245-314, respectively. We also established that two N-terminal, two C-terminal, or one N-terminal and one C-terminal WD repeat motif of chCAF-1p48 are required for this interaction, using deletion mutants of the respective regions. These results suggest that chCAF-1p48 is involved in many aspects of DNA-utilizing processes, through alterations in the chromatin structure based on both the acetylation and deacetylation of core histones.  相似文献   

16.
17.
18.
19.
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.  相似文献   

20.
Fanconi anemia is a polygenic trait hypothesized to be a DNA damage repair disease. We show that all three Fanconi anemia loci that have been cloned are expressed in the embryonic gonad during the period of primordial germ cell proliferation. Mice mutant for the Fanconi anemia complementation group C locus (Fancc) have reduced germ cell numbers as early as embryonic day E12.5, suggesting the Fancc protein functions prior to meiosis in both sexes. Depletion in the mutant occurs at a time when all three loci would be expressed in a wild-type gonad, implying a function in the early germline. Determination of the mitotic index of primordial germ cells by BrdU incorporation shows that germ cells in Fancc(-/-) mice proliferate significantly more slowly than littermate controls. This study demonstrates Fancc is required for mitotic proliferation of primordial germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号