首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The size distribution of lysosomes was determined in kidney proximal tubule cells of two mouse pigment mutants, pale ear and pallid, which have an increase in kidney lysosomal enzyme content caused by a decreased rate of secretion of lysosomal enzymes into urine. Both mutations have larger lysosomes when compared with normal mice. However, neither mutant contains the giant lysosomes (up to 11 micron diameter) common to the well-characterized beige mutant, which has a kidney secretory defect similar to the pale ear and pallid mutants. Subcellular distribution studies, performed by the osmotic shock technique, likewise suggested differences among the pigment mutants. A very high content of soluble enzyme, indicative of lysosomal fragility during homogenization, was found in extracts from the beige mutation. By comparison, the percent of soluble enzyme became progressively lower in extracts of the pallid and pale ear mutants and was lowest in extracts from normal mice. All 3 pigment mutants had normal concentrations of osmotically resistant membrane-bound lysosomal enzymes. This indicates that the excess, non-secreted, lysosomal enzyme in all three pigment mutants likely is present in classical lysosomal organelles rather than in other non-lysosomal subcellular membrane fractions. The results also illustrate that mammalian mutants which exhibit decreased lysosomal secretory rates can have strikingly different effects on morphology of lysosomes.Supported in Part by National Science Foundation Grant PCM 77-24804. E. K. N. was supported in part by United States Public Health Service Grant GM 007093-03.  相似文献   

2.
The hypopigment mutant mice, light ear, pallid, and beige, possess defects in melanosomes, lysosomes, and platelet dense granules, suggesting that these organelles share a common biogenesis and processing. Light ear and pallid mutants are animal models for Hermansky Pudlak syndrome, whereas the beige mouse is an animal model for Chediak Higashi syndrome. An established skin cell line from the light ear mouse was tested along with pallid and beige cell lines for mutant effects on secretion of lysosomal hydrolase activities of six different lysosomal glycosidases and the trafficking of N-[5-(5,7-dimethyl BODIPY)-1-pentanoyl]-D-erythrosphingosine (C(5)-DMB-ceramide). There were no consistently significant differences between the pallid and the beige mutant cell lines or between these two mutant lines and the control cell line in the percentage secretion of lysosomal hydrolase activities. The light ear mutant cell line, however, displayed a significantly lower percentage secretion of lysosomal hydrolase activities than all other cell lines tested. The light ear mutant cells processed C(5)-DMB-ceramide completely, as seen in the control cell line, whereas pallid and beige cell lines retained fluorescent material and exhibited a block in the complete processing of C(5)-DMB-ceramide 20 h after labeling. The block to secretion of lyososomal hydrolase activities in the light ear mutant cell line will be useful for further studies on this mutant's lysosomal defect.  相似文献   

3.
Hermansky-Pudlak Syndrome (HPS), a recessively inherited disease in humans, affects the biosynthesis/processing of the related intracellular organelles: lysosomes, melanosomes, and platelet dense granules. The disease is multigenic in both humans and mice where 14 separate genes have been demonstrated to be causative. Patients often die prematurely with severe lung abnormalities. Patients with the related Chediak-Higashi Syndrome (CHS) likewise have significantly reduced life spans. Long-term survival and lung histomorphology were analyzed in a pilot experiment involving several genetically defined singly and doubly mutant mouse HPS mutants and the beige CHS mutant to determine whether these parameters are altered in the mouse models. The mutants differed widely in both longevity and lung architecture. Mice doubly homozygous for the pale ear and ruby eye or for the muted and pearl genes had the shortest life spans with none surviving the two-year experimental duration. Life spans were similarly severely reduced in the beige and gunmetal mutants. Intermediate life spans were apparent in the pearl, pallid, and cocoa mutants whereas minimal effects were noted in ruby eye, muted, light ear, and cocoa mutants. Enlarged air spaces were noted in histologic sections of lungs of several of the mutants. For the most part, the severity of lung abnormalities was inversely proportional to the long-term survival of these various mutants, suggesting that lung pathology may contribute to mortality, as has been suggested for human HPS patients.  相似文献   

4.
Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure of function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5-fold increased concentrations of kidney beta-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney beta-galactosidase and alpha-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysosomal enzyme concentrations.--A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney beta-glucuronidase and beta-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.--These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice.  相似文献   

5.
In the normal C57BL/6J male mouse a specific subset of the kidney glycosphingolipids which is associated with multilamellar bodies of lysosomal origin and represents about 10% of the total kidney glycolipids, is excreted into the urine each day. This excretion is blocked and glycosphingolipids accumulate in the kidney of bg J/bgJ mutants of this strain. To examine this process in vitro, glycosphingolipid metabolism and excretion were studied in beige mouse kidney cell cultures. Primary kidney cell cultures from male C57BL/6J control and bg J/bg J beige mutants were grown in D-valine medium and glycosphingolipids labeled with [3H]palmitate. As we have shown previously, the giant lysosomes of altered morphology were maintained in cultures of the beige kidney cells. Beige-J and control cells synthesized the same types of glycosphingolipids, but the mutant cells had quantitatively higher levels of these compounds than control cells, as determined by high performance liquid chromatography. Beige-J cells incorporated more [3H]palmitate into glycospingholipids than control cells on a cpm/mg protein basis and the specific activity (cpm/pmole glycosphingolipid) was lower in beige cells. Medium from beige-J cells accumulated more glycosphingolipids than that from control cells in a 24 h period. The glycosphingolipids released into the medium as determined by HPLC were primarily non-lysosomal types and both control and mutant cells retained the glycosphingolipids associated with lysosomal multilamellar bodies excreted in vivo. The elevated levels of lysosomal glycosphingolipids and the dysmorphic lysosomes in primary cultures of beige cells, then, are not caused by a mutant block in secretion of lysosomes. (Mol Cell Biochem 118: 61–66, 1992)  相似文献   

6.
We have developed a new strain of mice homozygous for mutant alleles at both the light-ear locus on chromosome 5 and the pale-ear locus on chromosome 19. The pigmentation pattern of the double mutants, designated light-pale, is indistinguishable from the parental type. Elevated concentrations of lysosomal enzymes observed in certain tissues of the light-ear and pale-ear singly homozygous mice also are present in the double mutants, and are quantitatively indistinguishable from either parent. Although both mutations have pleiotropic effects on organelles in several tissues, neither locus influences the secretion of pancreatic zymogen granules. The close similarity in phenotypes of light ear, pale ear, and light-pale mice suggest that the le and ep loci encode different subunits of a multimeric protein, and that mutations affecting either subunit result in comparable losses of function.  相似文献   

7.
Melanosomes and lysosomes share structural and biosynthetic properties. Three mouse pigment mutants, ruby-eye, ruby-eye-2-J, and maroon, have abnormally high concentrations of kidney lysosomal enzymes. Concentrations of kidney nonlysosomal enzymes and of liver and serum lysosomal enzymes are normal. By light microscopy the mutants have normal kidney lysosome morphology. It does not appear that the mutant genes cause an increased rate of production of lysosomes since the increased kidney -glucuronidase concentration is not accompanied by a corresponding increase in rate of synthesis. The common defect in all mutants is a decreased rate of secretion of lysosomal enzymes from kidney into urine. Eight mouse pigment mutants are now known which affect both melanosome and lysosome function. They should serve as useful models for the study of the biogenesis, structure, and processing of these and other subcellular organelles.This work was supported in part by United States Public Health Service Research Grant GM-19521 and by National Science Foundation Grant PCM77-24804. E. K. N. was supported in part by United States Public Health Service Grant GM07093-03. F. W. was a high school student in the summer program supported by National Science Foundation Grant SP177-26980.  相似文献   

8.
We have found that the pigmentation mutant light ear in the mouse has a striking effect on lysosomes in the kidney. Male mice homozygous for the le mutant allele have a 4-fold elevated concentration of kidney beta-galactosidase (EC 3.2.1.23). The abnormal elevation of kidney beta-galactosidase is the net result of two processes. First, beta-galactosidase is elevated due to the defective urinary secretion of lysosomal enzymes which is a specific effect of the le mutation. Secondly, this effect is most evident in males and testosterone-treated females because of the induction of beta-galactosidase synthesis by testosterone, which occurs in +/+ as well as in mutant mice. The pale-ear mutation (ep) which mimics the pigmentation phenotype of le also has a similar effect on kidney lysosomes.  相似文献   

9.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

10.
Lysosomal mutations inhibit lipofuscinosis of the spleen in C57BL mice   总被引:1,自引:0,他引:1  
Beige, bg, and reduced pigmentation, rp, are recessive mutations affecting lysosomal function. Homozygosity for beige prevented lipofuscinosis of the spleen in C57BL mice and its incidence was greatly reduced by homozygosity for rp. Dilute (d) homozygotes, with normal lysosomes, were susceptible to lipofuscinosis even though their melanosomes were more severely affected than those of beige mice.  相似文献   

11.
Previous studies from our laboratory have shown that male C57BL/6J mice excrete into the urine multilamellar lysosomal bodies that contain specific neutral glycosphingolipids. These mice excrete approximately 20-30% of their kidney glycolipids each day. The significance and function of this secretion of multilamellar lysosomal organelles is unknown. To characterize these excreted bodies further, we report here their neutral lipid and phospholipid composition. The bodies were collected by differential centrifugation, extracted with chloroform-methanol, and lipids were fractionated into neutral lipids, glycolipids, and phospholipids. The neutral lipids consisted primarily of cholesterol, dolichol, and ubiquinone. The phospholipid fraction consisted primarily of a single molecular species of phosphatidylcholine. This lipid which comprises more than 90% of the total phospholipids was found to contain 16:0 ether and C22:6 n-3 fatty acid as determined by gas-liquid chromatography-mass spectrometry. The glycosphingolipids as reported previously consisted primarily of galabiosylceramides and globotriaosylceramides. This membrane lipid composition is different from any previously reported cellular organelle.  相似文献   

12.
Lysosome-related organelles.   总被引:25,自引:0,他引:25  
Lysosomes are membrane-bound cytoplasmic organelles involved in intracellular protein degradation. They contain an assortment of soluble acid-dependent hydrolases and a set of highly glycosylated integral membrane proteins. Most of the properties of lysosomes are shared with a group of cell type-specific compartments referred to as 'lysosome-related organelles', which include melanosomes, lytic granules, MHC class II compartments, platelet-dense granules, basophil granules, azurophil granules, and Drosophila pigment granules. In addition to lysosomal proteins, these organelles contain cell type-specific components that are responsible for their specialized functions. Abnormalities in both lysosomes and lysosome-related organelles have been observed in human genetic diseases such as the Chediak-Higashi and Hermansky-Pudlak syndromes, further demonstrating the close relationship between these organelles. Identification of genes mutated in these human diseases, as well as in mouse and Drosophila: pigmentation mutants, is beginning to shed light on the molecular machinery involved in the biogenesis of lysosomes and lysosome-related organelles.  相似文献   

13.
Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA-gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted.  相似文献   

14.
A S Raikhel 《Tissue & cell》1986,18(1):125-142
A massive and selective degradation of Golgi complexes, secretory granules, and RER is the mechanism responsible for the rapid termination of Vg secretion by trophocytes of the mosquito fat body. These cells are involved in an intensive synthesis of a glycoprotein, vitellogenin (Vg), which is accumulated by developing oocytes as yolk protein. Previously, assays for lysosomal enzymes have demonstrated that the cessation of Vg synthesis is characterized by a sharp increase in lysosomal activity; and fluorescent microscopy has shown that, during this intense lysosomal activity, Vg concentrates in lysosomes. In this report, electron microscopy combined with cytochemistry for lysosomal enzymes and localization of Vg with colloidal gold immunocytochemistry has shown that this lysosomal activity is directed towards selective degradation of Vg and organelles associated with its synthesis and secretion. Three organelles undergo lysosomal breakdown: the Golgi complex, Vg-containing secretory granules, and RER. The degradation of Golgi complexes occurs in two steps similar to that for RER: first, the organelle is sequestered by double isolation membranes, and the resulting pre-lysosome then fuses with a primary or secondary lysosome. In contrast, mature Vg-containing secretory granules fuse with lysosomes directly. This combination of crino- and autophagy is a specific, highly intense, and precisely timed event.  相似文献   

15.
Late endocytic organelles including lysosomes are highly dynamic acidic organelles. Late endosomes and lysosomes directly fuse for content mixing to form hybrid organelles, from which lysosomes are reformed. It is not fully understood how these processes are regulated and maintained. Here we show that the Caenorhabditis elegans ARL-8 GTPase is localized primarily to lysosomes and involved in late endosome-lysosome fusion in the macrophage-like coelomocytes. Loss of arl-8 results in an increase in the number of late endosomal/lysosomal compartments, which are smaller than wild type. In arl-8 mutants, late endosomal compartments containing endocytosed macromolecules fail to fuse with lysosomal compartments enriched in the aspartic protease ASP-1. Furthermore, loss of arl-8 strongly suppresses formation of enlarged late endosome-lysosome hybrid organelles caused by mutations of cup-5, which is the orthologue of human mucolipin-1. These findings suggest that ARL-8 mediates delivery of endocytosed macromolecules to lysosomes by facilitating late endosome-lysosome fusion.  相似文献   

16.
Sandy: a new mouse model for platelet storage pool deficiency   总被引:4,自引:0,他引:4  
Sandy (sdy) is a mouse mutant with diluted pigmentation which recently arose in the DBA/2J strain. Genetic tests indicate it is caused by an autosomal recessive mutation on mouse Chromosome 13 near the cr and Xt genetic loci. This mutation is different genetically and hematologically from previously described mouse pigment mutations with storage pool deficiency (SPD). The sandy mutant has diluted pigmentation in both eyes and fur, is fully viable and has prolonged bleeding times. Platelet serotonin levels are extremely low although ATP dependent acidification activity of platelet organelles appears normal. Also, platelet dense granules are extremely reduced in number when analysed by electron microscopy of unfixed platelets. Platelets have abnormal uptake and flashing of the fluorescent dye mepacrine. Secretion of lysosomal enzymes from kidney and from thrombin-stimulated platelets is depressed 2- and 3-fold, and ceroid pigment is present in kidney. Sandy platelets have a reduced rate of aggregation induced by collagen. The sandy mutant has an unusually severe dense granule defect and thus may be an appropriate model for cases of human Hermansky-Pudlak syndrome with similarly extreme types of SPD. It represents the tenth example of a mouse mutant with simultaneous defects in melanosomes, lysosomes and/or platelet dense granules.  相似文献   

17.
Glycolipid-binding proteins   总被引:1,自引:0,他引:1  
Proteins which bind glycolipids with high specificity are tentatively divided into two groups. One group consists of activator proteins involved in the catabolism of glycolipids by acid lysosomal hydrolases. Two activator proteins, GM2-activator and sphingolipid activator protein-1, are critically appraised on their glycolipid-binding properties and on their activity to facilitate the transfer of glycolipids. These proteins are glycoproteins localized in the lysosomes. Their molecular weights are in a range of 21 000-27 000, and isoelectric points are 4-5. Glycolipid transfer protein (GLTP) is included in the other group. GLTP purified from pig brain has a molecular weight of about 20 000 and an isoelectric point of 8.3. GLTP facilitates the transfer of various glycosphingolipids and glyceroglycolipids between membranes. The protein does not facilitate the transfer of phospholipids or cholesterol. GLTP binds galactosylceramide. The galactosylceramide-GLTP complex participates in the transfer reaction as the intermediate. Each protein in both groups binds glycolipids with a characteristic specificity to the sugar moiety. A stoichiometry of 1 mol of lipid per mol of protein has been found in all three proteins. Proteins in both groups seem to have a hydrophobic region on their surface, since all three proteins have been efficiently purified by hydrophobic chromatography.  相似文献   

18.
Although glycosphingolipids are ubiquitously expressed and essential for multicellular organisms, surprisingly little is known about their intracellular functions. To explore the role of glycosphingolipids in membrane transport, we used the glycosphingolipid-deficient GM95 mouse melanoma cell line. We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex. However, tyrosinase-related protein 1 still reached melanosomal structures via the plasma membrane instead of the direct pathway from the Golgi. Delivery of lysosomal enzymes from the Golgi complex to endosomes was normal, suggesting that this pathway is not affected by the absence of glycosphingolipids. Loss of pigmentation was due to tyrosinase mislocalization, since transfection of tyrosinase with an extended transmembrane domain, which bypassed the transport block, restored pigmentation. Transfection of ceramide glucosyltransferase or addition of glucosylsphingosine restored tyrosinase transport and pigmentation. We conclude that protein transport from Golgi to melanosomes via the direct pathway requires glycosphingolipids.  相似文献   

19.
《The Journal of cell biology》1983,97(5):1559-1565
beta-galactosidase is a ubiquitous lysosomal hydrolase that specifically cleaves terminal beta-galactosyl residues from glycoproteins, glycosaminoglycans, oligosaccharides, and glycolipids. To study the intracellular distribution of this enzyme, we prepared a specific polyclonal antibody to lysosomal beta-galactosidase by immunizing rabbits with a highly purified preparation of beta- galactosidase from rat liver. Using this antibody we employed an immunocytochemical technique (protein A coupled to horseradish peroxidase and diaminobenzidine cytochemistry) and showed that beta- galactosidase is present in all hepatocytes of the rat liver. All types of lysosomes, the rough endoplasmic reticulum, and the specialized region of smooth endoplasmic reticulum known as GERL showed immunoreactivity. This in situ distribution suggests that these organelles are involved in the biosynthesis and intracellular sorting of this lysosomal enzyme.  相似文献   

20.
Lysosomes are dynamic organelles, which can fuse with a variety of targets and undergo constant regeneration. They can move along microtubules in a retrograde and anterograde fashion by using motor proteins, kinesin and dynein, being main players in extracellular secretion, intracellular components degradation and recycling. Moreover, lysosomes interact with other intracellular organelles to regulate their turnover, such as ER, mitochondria and peroxisomes.The correct localization of lysosomes is relevant in several physiological processes, including appropriate antigen presentation, neurotransmission and receptors modulation in neuronal synapsis, whereas hepatic lysosomes and autophagy are master regulators of nutrient homeostasis.Alterations in lysosome function due to mutation of genes encoding lysosomal proteins, soluble hydrolases as well as membrane proteins, lead to lysosomal storage diseases (LSDs). Lysosomes containing undegraded substrates are finally stacked and therefore miss positioned inside the cell, leading to lysosomal dysfunction, which impacts a wide range of cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号