首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ban JY  Jeon SY  Bae K  Song KS  Seong YH 《Life sciences》2006,79(24):2251-2259
We previously reported that the Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. Here, we isolated catechin and epicatechin from S. chinae rhizome and also studied their neuroprotective effects on Abeta (25-35)-induced neurotoxicity in cultured rat cortical neurons. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced neuronal cell death at a concentration of 10 microM, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Catechin and epicatechin also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species (ROS) and activation of caspase-3. These results suggest that catechin and epicatechin prevent Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity. Furthermore, these effects of catechin and epicatechin may be associated with the neuroprotective effect of the S. chinae rhizome.  相似文献   

2.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   

3.
Zhao L  Qian ZM  Zhang C  Wing HY  Du F  Ya K 《Aging cell》2008,7(1):47-57
This study aims to investigate the roles of the protein kinase A (PKA)- and caspase-dependent pathways in amyloid beta-peptide 31-35 (Abeta[31-35])-induced apoptosis, and the mechanisms of neuroprotection by group III metabotropic glutamate receptor (mGluR) activation against apoptosis induced by Abeta[31-35] in cortical neurons. We demonstrated that Abeta[31-35] induces neuronal apoptosis as well as a significant increase in caspase-3, -8 and -9. Activation of group III mGluRs by l-serine-O-phosphate and (R,S)-4-phosphonophenylglycine (two group III mGluR agonists), which attenuate the effects of Abeta[31-35], provides neuroprotection to the cortical neurons subjected to Abeta[31-35]. We also showed that Rp-cAMP, an inhibitor of cAMP-dependent PKA, has the ability to protect neurons from Abeta[31-35]-induced apoptosis and to reverse almost completely the effects of Abeta[31-35] on the activities of caspase-3. Further, we found that Sp-cAMP, an activator of cAMP-dependent PKA, can significantly abolish the l-serine-O-phosphate- and (R,S)-4-phosphonophenylglycine-induced neuroprotection against apoptosis, and decrease caspase-3, -8 and -9 in the Abeta[31-35]-treated neurons. Our findings suggest that neuronal apoptosis induced by Abeta[31-35] is mediated by the PKA-dependent pathway as well as the caspase-dependent intrinsic and extrinsic apoptotic pathways. Activation of group III mGluRs protects neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Inhibition of the PKA-dependent pathway might also protect neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Taken together, our observations suggest that Abeta[31-35] might have the ability to activate PKA, which in turn activates the caspase-dependent intrinsic and extrinsic apoptotic pathways, inducing apoptosis in the cortical neurons.  相似文献   

4.
In beta-amyloid (Abeta)-induced neurotoxicity, activation of the NMDA receptor, increased Ca2+ and oxidative stress are intimately associated with neuronal cell death as normally seen in NMDA-induced neurotoxicity. We have recently shown selective sparing of somatostatin (SST)-positive neurons and increased SST expression in NMDA agonist-induced neurotoxicity. Accordingly, the present study was undertaken to determine the effect of Abeta25-35-induced neurotoxicity on the expression of SST in cultured cortical neurons. Cultured cortical cells were exposed to Abeta25-35 and processed to determine the cellular content and release of SST into medium by radioimmunoassay and SST mRNA by RT-PCR. Abeta25-35 induces neuronal cell death in a concentration- and time-dependent fashion, increases SST mRNA synthesis and induces an augmentation in the cellular content of SST. No significant changes were seen on SST release at any concentration of Abeta25-35 after 24 h of treatment. However, Abeta25-35 induces a significant increase of SST release into medium only after 12 h in comparison with other time points. Most significantly, SST-positive neurons are selectively spared in the presence of a lower concentration of Abeta25-35, whereas, in the presence of higher concentrations of Abeta25-35 for extended time periods, SST-positive neurons decrease gradually. Furthermore, Abeta25-35 induces apoptosis at lower concentrations (5 and 10 micromol/L) and necrosis at higher concentrations (20 and 40 micromol/L). Consistent with the increased accumulation of SST, these data suggest that Abeta25-35 impairs cell membrane permeability. Selective sparing of SST-positive neurons at lower concentrations of Abeta25-35 at early time points directly correlates with the pathophysiology of Alzheimer's disease.  相似文献   

5.
Previously, we found that amyloid beta-protein (Abeta)1-42 exhibits neurotoxicity, while Abeta1-40 serves as an antioxidant molecule by quenching metal ions and inhibiting metal-mediated oxygen radical generation. Here, we show another neuroprotective action of nonamyloidogenic Abeta1-40 against Abeta1-42-induced neurotoxicity in culture and in vivo. Neuronal death was induced by Abeta1-42 at concentrations higher than 2 microm, which was prevented by concurrent treatment with Abeta1-40 in a dose-dependent manner. However, metal chelators did not prevent Abeta1-42-induced neuronal death. Circular dichroism spectroscopy showed that Abeta1-40 inhibited the beta-sheet transformation of Abeta1-42. Thioflavin-T assay and electron microscopy analysis revealed that Abeta1-40 inhibited the fibril formation of Abeta1-42. In contrast, Abeta1-16, Abeta25-35, and Abeta40-1 did not inhibit the fibril formation of Abeta1-42 nor prevent Abeta1-42-induced neuronal death. Abeta1-42 injection into the rat entorhinal cortex (EC) caused the hyperphosphorylation of tau on both sides of EC and hippocampus and increased the number of glial fibrillary acidic protein (GFAP)-positive astrocytes in the ipsilateral EC, which were prevented by the concurrent injection of Abeta1-40. These results indicate that Abeta1-40 protects neurons from Abeta1-42-induced neuronal damage in vitro and in vivo, not by sequestrating metals, but by inhibiting the beta-sheet transformation and fibril formation of Abeta1-42. Our data suggest a mechanism by which elevated Abeta1-42/Abeta1-40 ratio accelerates the development of Alzheimer's disease (AD) in familial AD.  相似文献   

6.
Astrocytosis is a common feature of amyloid plaques. The Abeta-astrocyte interaction produces a detrimental effect on neurons, which may contribute to neurodegeneration in Alzheimer disease (AD). The regulation of astrocyte apoptosis is essential to physiological and pathological processes in the CNS. Melatonin is a potent antioxidant and free radical scavenger. Previously, we showed that melatonin alleviated the learning and memory deficits in the APP 695 transgenic mouse model of AD. In this study, the importance of melatonin in the management of Abeta-induced apoptosis in an astrocyte-like cell is discussed. We found that rat astroglioma C6 cells treated with Abeta25-35 or Abeta1-42 undergo apoptosis and that melatonin pretreatment at 10(-5), 10(-6), and 10(-7) M significantly attenuates Abeta25-35- or Abeta1-42-induced apoptosis. The antiapoptotic effects of melatonin were extremely reproducible and corroborated by multiple quantitative methods, including an MTT cell viability assay, Hoechst 33342 nuclei staining, DNA fragmentation analysis, and flow cytometric analysis. In addition, melatonin effectively suppressed Abeta1-42-induced nitric oxide formation, remarkably prevented Abeta1-40-induced intracellular calcium overload, and significantly alleviated Abeta1-40-induced membrane rigidity. Our results demonstrate that, in addition to the beneficial effects of providing direct antioxidant protection to neurons, melatonin may enhance neuroprotection against Abeta-induced neurotoxicity by promoting the survival of glial cells.  相似文献   

7.
The beta-amyloid (Abeta) peptide Abeta25-35 provokes apoptosis of cerebellar granule cells through activation of caspase-3 while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes granule cell survival by inhibiting caspase-3 activation through the intrinsic apoptotic pathway. The aim of the present study was to determine whether PACAP could prevent Abeta25-35 neurotoxicity by inhibiting caspase-3 activity. A 24-h exposure of cultured cerebellar granule cells to Abeta25-35 induced shrinkage of cell bodies, neurite retraction and alteration of mitochondrial activity. Administration of graded concentrations (10-80 microM) of Abeta25-35 induced a dose-related decrease of the number of living cells, and the neurotoxic effect was highly significant after a 24-h exposure to 80 microM Abeta25-35. Exposure of cerebellar granule cells to Abeta25-35 markedly enhanced caspase-3 but not caspase-9 activity. Co-incubation with 1 microM PACAP significantly reduced Abeta25-35-evoked caspase-3 activation. In contrast, PACAP did not prevent the deleterious effects of Abeta25-35 on mitochondrial potential and granule cell survival. Taken together, these data suggest that caspase-3 activation is not the main pathway activated by Abeta25-35 that leads to granule cell death. The results also demonstrate that PACAP cannot be considered as a potent neuroprotective factor against Abeta25-35-induced apoptosis in cerebellar granule neurons.  相似文献   

8.
9.
Activation of metabotropic glutamate receptor 5 (mGluR5) has been shown to reduce caspase-dependent apoptosis in primary neuronal cultures induced by staurosporine and etoposide. beta-Amyloid (Abeta)-induced neurotoxicity in culture appears to be in part caspase mediated. In the present studies the effects of treatment with an mGluR5 agonist or antagonist on Abeta-induced neuronal apoptosis were examined in rat cortical neuronal cultures. Pretreatment with the selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) markedly reduced the number of apoptotic cells after exposure to Abeta (25-35), as well as associated LDH release. Blockade of mGluR5 by the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP) attenuated these effects of CHPG. A similar neuroprotective effect of mGluR5 activation by CHPG was observed in cultures treated with full-length Abeta peptide (1-42). CHPG attenuated Abeta (25-35)-induced cytochrome c release and decreased levels of active caspase-3 protein. CHPG also reduced translocation of apoptosis-inducing factor (AIF) induced by Abeta (25-35). Thus, mGluR5 activation limits the release of mitochondrial proteins associated with induction of both caspase-dependent and -independent apoptosis.  相似文献   

10.
Amyloid beta-peptide (Abeta) plays a fundamental role in the pathogenesis of Alzheimer's disease. We recently reported that the redox state of the methionine residue in position 35 of amyloid beta-peptide (Abeta) 1-42 (Met35) strongly affects the peptide's ability to trigger apoptosis and is thus a major determinant of its neurotoxicity. Dysregulation of intracellular Ca(2+) homeostasis resulting in the activation of pro-apoptotic pathways has been proposed as a mechanism underlying Abeta toxicity. Therefore, we investigated correlations between the Met35 redox state, Abeta toxicity, and altered intracellular Ca(2+) signaling in human neuroblastoma IMR32 cells. Cells incubated for 6-24 h with 10 microM Abeta1-42 exhibited significantly increased KCl-induced Ca(2+) transient amplitudes and resting free Ca(2+) concentrations. Nifedipine-sensitive Ca(2+) current densities and Ca(v)1 channel expression were markedly enhanced by Abeta1-42. None of these effects were observed when cells were exposed to Abeta containing oxidized Met35 (Abeta1-42(Met35-Ox)). Cell pre-treatment with the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (1 microM) or the Ca(v)1 channel blocker nifedipine (5 microM) significantly attenuated Abeta1-42-induced apoptosis but had no effect on Abeta1-42(Met35-Ox) toxicity. Collectively, these data suggest that reduced Met35 plays a critical role in Abeta1-42 toxicity by rendering the peptide capable of disrupting intracellular Ca(2+) homeostasis and thereby provoking apoptotic cell death.  相似文献   

11.
In our previous reports using primary cultured rat hippocampal neurons, pathophysiological concentrations (< or =10 nM) of amyloid beta proteins (Abetas) showed neurotoxicity via a phosphatidylinositol metabolism disorder, and soybean-derived phosphatidylinositol protected the neurons against the Abeta's neurotoxicity. In the present study, such a neurotoxic effect of Abeta and a neuroprotective effect of phosphatidylinositol were examined in vivo using transgenic mice expressing V337 M human tau. Intrahippocampal CA1 injection of 1.5 mul of 100 nM or 1 microM Abeta25-35 increased the number of degenerating neurons with an apoptotic feature in bilateral hippocampal CA1, CA2, CA3 and dentate gyrus regions in 1 month, demonstrating an in vivo neurotoxic effect of Abeta at lower concentrations after diffusion. Intrahippocampal co-injection or intracerebroventricular administration of 1.5 microl of 500 nM phosphatidylinositol prevented the Abeta25-35-induced neuronal degeneration in all the hippocampal regions, while co-injection of another acidic phospholipid, phosphatidylserine (1.5 microl, 500 nM) with Abeta25-35 showed no protective effects. Thus, exogenously applied phosphatidylinositol appeared to minimize the toxic effects of Abeta in vivo. These results suggest that soybean-derived phosphatidylinositol may be effective in the treatment of Alzheimer's disease.  相似文献   

12.
Protein kinase C (PKC) signaling pathway is recognized as an important molecular mechanism of Alzheimer??s disease (AD) in the regulation of neuronal plasticity and survival. Genistein, the most active molecule of soy isoflavones, exerts neuroprotective roles in AD. However, the detailed mechanism has not been fully understood yet. The present study aimed to investigate whether the neuroprotective effects of genistein against amyloid ?? (A??)-induced toxicity in cultured rat pheochromocytoma (PC12) cells is involved in PKC signaling pathway. PC12 cells were pretreated with genistein for 2?h following incubation with A??25?C35 for additional 24?h. Cell viability was assessed by MTT. Hoechst33342/PI staining was applied to determine the apoptotic cells. PKC activity, intracellular calcium level and caspase-3 activity were analyzed by assay kits. The results showed that pretreatment with genistein significantly increased cell viability and PKC activity, decreased the levels of intracellular calcium, attenuated Hoechst/PI staining and blocked caspase-3 activity in A??25?C35-treated PC12 cells. Pretreatment of Myr, a general PKC inhibitor, significantly attenuated the neuroprotective effect of genistein against A??25?C35-treated PC12 cells. The present study indicates that PKC signaling pathway is involved in the neuroprotective action of genistein against A??25?C35-induced toxicity in PC12 cells.  相似文献   

13.
14.
15.
16.
Our previous studies have demonstrated that ginsenoside Rd (GSRd), one of the principal ingredients of Pana notoginseng, has neuroprotective effects against ischemic stroke. However, the possible mechanism(s) underlying the neuroprotection of GSRd is/are still largely unknown. In this study, we treated glutamate-injured cultured rat hippocampal neurons with different concentrations of GSRd, and then examined the changes in neuronal apoptosis and intracellular free Ca2+ concentration. Our MTT assay showed that GSRd significantly increased the survival of neurons injured by glutamate in a dose-dependent manner. Consistently, TUNEL and Caspase-3 staining showed that GSRd attenuated glutamate-induced cell death. Furthermore, calcium imaging assay revealed that GSRd significantly attenuated the glutamate-induced increase of intracellular free Ca2+ and also inhibited NMDA-triggered Ca2+ influx. Thus, the present study demonstrates that GSRd protects the cultured hippocampal neurons against glutamate-induced excitotoxicity, and that this neuroprotective effect may result from the inhibitory effects of GSRd on Ca2+ influx.  相似文献   

17.
Alzheimer's disease is a major illness of dementia characterized by the presence of amyloid plaques, neurofibrillary tangles, and extensive neuronal apoptosis. However, the mechanism behind neuronal apoptosis in the Alzheimer's-diseased brain is poorly understood. This study underlines the importance of neutral sphingomyelinase in fibrillar Abeta peptide-induced apoptosis and cell death in human primary neurons. Abeta1-42 peptides induced the activation of sphingomyelinases and the production of ceramide in neurons. Interestingly, neutral (N-SMase), but not acidic (A-SMase), sphingomyelinase was involved in Abeta1-42-mediated neuronal apoptosis and cell death. Abeta1-42-induced production of ceramide was redox-sensitive, as reactive oxygen species were involved in the activation of N-SMase but not A-SMase. Abeta1-42 peptides induced the NADPH oxidase-mediated production of superoxide radicals in neurons that was involved in the activation of N-SMase, but not A-SMase, via hydrogen peroxide. Consistently, superoxide radicals generated by hypoxanthine and xanthine oxidase also induced the activation of N-SMase, but not A-SMase, through a catalase-sensitive pathway. Furthermore, antisense knockdown of p22phox, a subunit of NADPH oxidase, inhibited Abeta1-42-induced neuronal apoptosis and cell death. These studies suggest that fibrillar Abeta1-42 peptides induce neuronal apoptosis through the NADPH oxidase-superoxide-hydrogen peroxide-NS-Mase-ceramide pathway.  相似文献   

18.
Accumulated amyloid-β (Aβ) is a well-known cause of neuronal apoptosis in Alzheimer disease and functions in part by generating oxidative stress. Our previous work suggested that cyclophilin B (CypB) protects against endoplasmic reticulum (ER) stress. Therefore, in this study we examined the ability of CypB to protect against Aβ toxicity. CypB is present in the neurons of rat and mouse brains, and treating neural cells with Aβ25-35 mediates apoptotic cell death. Aβ25-35-induced neuronal toxicity was inhibited by the overexpression of CypB as measured by cell viability, apoptotic morphology, sub-G1 cell population, intracellular reactive oxygen species accumulation, activated caspase-3, PARP cleavage, Bcl-2 proteins, mitogen-activated protein kinase (MAPK) activation, and phosphoinositide 3-kinase (PI-3-K) activation. CypB/R95A PPIase mutants did not reduce Aβ25-35 toxicity. We showed that Aβ25-35-induced apoptosis is more severe in a CypB knockdown model, confirming that CypB protects against Aβ25-35-induced toxicity. Consequently, these findings suggest that CypB may protect against Aβ toxicity by its antioxidant properties, by regulating MAPK and PI-3-K signaling, and through the ER stress pathway.  相似文献   

19.
Neuronal cell death as a result of apoptosis is associated with cerebrovascular stroke and various neurodegenerative disorders. Pharmacological agents that maintain normal intracellular Ca2+ levels and inhibit cellular oxidative stress may be effective in blocking abnormal neuronal apoptosis. In this study, a spontaneous (also referred to as age-induced) model of apoptosis consisting of rat cerebellar granule cells was used to evaluate the antiapoptotic activities of voltage-sensitive Ca2+ channel blockers and various antioxidants. The results of these experiments demonstrated that the charged, dihydropyridine Ca2+ channel blocker amlodipine had very potent neuroprotective activity in this system, compared with antioxidants and neutral Ca2+ channel blockers (nifedipine and nimodipine). Within its effective pharmacological range (10-100 nM), amlodipine attenuated intracellular neuronal Ca2+ increases elicited by KCl depolarization but did not affect Ca2+ changes triggered by N-methyl-D-aspartate receptor activation. Amlodipine also inhibited free radical-induced damage to lipid constituents of the membrane in a dose-dependent manner, independent of Ca2+ channel modulation. In parallel experiments, spontaneous neuronal apoptosis was inhibited in dose- and time-dependent manners by antioxidants (U-78439G, alpha-tocopherol, and melatonin), nitric oxide synthase inhibitors (N-nitro-L-arginine and N-nitro-D-arginine), and a nitric oxide chelator (hemoglobin) in the micromolar range. These results suggest that spontaneous neuronal apoptosis is associated with excessive Ca2+ influx, leading to further intracellular Ca2+ increases and the generation of reactive oxygen species. Agents such as amlodipine that block voltage-sensitive Ca2+ channels and inhibit cellular oxidative stress may be effective in the treatment of cerebrovascular stroke and neurodegenerative diseases associated with excessive apoptosis.  相似文献   

20.
The extracellular aggregation of amyloid beta (Abeta) peptides and the intracellular hyperphosphorylation of tau at specific epitopes are pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). Cdk5 phosphorylates tau at AD-specific phospho-epitopes when it associates with p25. p25 is a truncated activator, which is produced from the physiological Cdk5 activator p35 upon exposure to Abeta peptides. We show that neuronal infections with Cdk5 inhibitory peptide (CIP) selectively inhibit p25/Cdk5 activity and suppress the aberrant tau phosphorylation in cortical neurons. Furthermore, Abeta(1-42)-induced apoptosis of these cortical neurons was also reduced by coinfection with CIP. Of particular importance is our finding that CIP did not inhibit endogenous or transfected p35/Cdk5 activity, nor did it inhibit the other cyclin-dependent kinases such as Cdc2, Cdk2, Cdk4 and Cdk6. These results, therefore, provide a strategy to address, and possibly ameliorate, the pathology of neurodegenerative diseases that may be a consequence of aberrant p25 activation of Cdk5, without affecting 'normal' Cdk5 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号