首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have previously reported that obesity-induced diabetes developed in high-fat diet (HFD)-fed BDF1 mice. This is caused by insufficient insulin response to an excess glucose load. In this study, we have shown that the enhanced expression of retinaldehyde dehydrogenase 3 (Raldh3) causes functional disorders of pancreatic islets in diabetic mouse models. In the pancreatic islets of HFD-induced diabetic BDF1 mice and spontaneously diabetic C57BL/KsJdb/db mice, gene expression analysis with oligonucleotide microarray revealed a significant increase in Raldh3 expression. Exposure to a culture medium containing a higher glucose concentration (25 mM) significantly increased Raldh3 expression in murine MIN6 and alphaTC1 clone 9 cells, which derived from the α and β-cells of pancreatic islets, respectively. Overexpression of Raldh3 reduced the insulin secretion in MIN6 cells, and surprisingly, increased the glucagon secretion in alphaTC1 clone 9 cells. Furthermore, the knockdown of Raldh3 expression with siRNA decreased the glucagon secretion in alphaTC1 clone 9 cells. Raldh3 catalyzes the conversion of 13-cis retinal to 13-cis retinoic acid and we revealed that 13-cis retinoic acid significantly reduces cell viability in MIN6 and alphaTC1 clone 9 cells, but not in cells of H4IIEC3, 3T3-L1, and COS-1 cell lines. These findings suggest that an increasing expression of Raldh3 deregulates the balanced mechanisms of insulin and glucagon secretion in the pancreatic islets and may induce β-cell dysfunction leading to the development of type 2 diabetes.  相似文献   

4.
Abnormal glucagon secretion is often associated with diabetes mellitus. However, the mechanisms by which nutrients modulate glucagon secretion remain poorly understood. Paracrine modulation by beta- or delta-cells is among the postulated mechanisms. Herein we present further evidence of the paracrine mechanism. First, to activate cellular metabolism and thus hormone secretion in response to specific secretagogues, we engineered insulinoma INS-1E cells using an adenovirus-mediated expression system. Expression of the Na+-dependent dicarboxylate transporter (NaDC)-1 resulted in 2.5- to 4.6-fold (P < 0.01) increases in insulin secretion in response to various tricarboxylic acid cycle intermediates. Similarly, expression of glycerol kinase (GlyK) increased insulin secretion 3.8- or 4.2-fold (P < 0.01) in response to glycerol or dihydroxyacetone, respectively. This cell engineering method was then modified, using the Cre-loxP switching system, to activate beta-cells and non-beta-cells separately in rat islets. NaDC-1 expression only in non-beta-cells, among which alpha-cells are predominant, caused an increase (by 1.8-fold, P < 0.05) in glucagon secretion in response to malate or succinate. However, the increase in glucagon release was prevented when NaDC-1 was expressed in whole islets, i.e., both beta-cells and non-beta-cells. Similarly, an increase in glucagon release with glycerol was observed when GlyK was expressed only in non-beta-cells but not when it was expressed in whole islets. Furthermore, dicarboxylates suppressed basal glucagon secretion by 30% (P < 0.05) when NaDC-1 was expressed only in beta-cells. These data demonstrate that glucagon secretion from rat alpha-cells depends on beta-cell activation and provide insights into the coordinated mechanisms underlying hormone secretion from pancreatic islets.  相似文献   

5.
Intra-islet interactions influence beta-cell function, and disruption of islet architecture results in a reduction in glucose-induced insulin secretion, whereas re-aggregation improves secretory responsiveness. Our studies on MIN6 cells have shown that by configuring beta-cells as three-dimensional islet-like structures there is a marked improvement in glucose-induced insulin secretion compared to that of their monolayer equivalents. In the present study, we have used the mouse glucagon-secreting alphaTC1 cell line to see whether homotypic interactions are important in the regulation of glucagon secretion from alpha-cells. We found no significant difference in the secretory responses of alphaTC1 cells maintained as monolayers or as cell clusters. We also found that different cell adhesion molecules are involved in cell interactions between alpha- and beta-cells; MIN6 cells express ECAD, whereas alphaTC1 cells express NCAM. ECAD is necessary for cell cluster formation by MIN6 cells but not by alphaTC1 cells, whereas NCAM is not needed for the formation of cell clusters in either cell line.  相似文献   

6.
7.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.  相似文献   

8.
Iino S  Sudo T  Niwa T  Fukasawa T  Hidaka H  Niki I 《FEBS letters》2000,479(1-2):46-50
The aim of this study was to investigate possible involvement of annexin XI in the insulin secretory machinery. In fluorescence immunocytochemistry, annexin XI was found in the cytoplasm of pancreatic endocrine cells and a pancreatic beta-cell line, MIN6, in a granular pattern. MIN6 cells also possessed weak and diffused annexin XI immunoreactivity in the cytoplasm. Immunoelectron microscopy revealed annexin XI in the insulin granules. Insulin secretion from streptolysin-O-permeabilized MIN6 cells was inhibited by anti-annexin XI antibody, when the release was stimulated by either Ca2+ or GTP-gammaS, but not by a protein kinase C-activating phorbol ester. Inhibition of insulin release by anti-annexin XI antibody was reproduced in permeabilized rat islets. These findings suggest that annexin XI may be involved in the regulation of insulin secretion from the pancreatic beta-cells.  相似文献   

9.
Numerous overexpression studies have recently implicated Syntaxin 4 as an effector of insulin secretion, although its requirement in insulin granule exocytosis is unknown. To address this, islets from Syntaxin 4 heterozygous (-/+) knockout mice were isolated and compared with islets from wild-type mice. Under static incubation conditions, Syntaxin 4 (-/+) islets showed a 60% reduction in glucose-stimulated insulin secretion compared with wild-type islets. Perifusion analyses revealed that Syntaxin 4 (-/+) islets secreted 50% less insulin during the first phase of glucose-stimulated insulin secretion and that this defect could be fully restored by the specific replenishment of recombinant Syntaxin 4. This essential role for Syntaxin 4 in secretion from the islet was localized to the beta-cells because small interfering RNA-mediated depletion of Syntaxin 4 in MIN6 beta-cells abolished glucose-stimulated insulin secretion. Moreover, immunofluorescent confocal microscopy revealed that Syntaxin 4 was principally localized to the beta-cells and not the alpha-cells of the mouse islet. Remarkably, islets isolated from transgenic mice that express 2.4-fold higher levels of Syntaxin 4 relative to wild-type mice secreted approximately 35% more insulin during both phases of insulin secretion, suggesting that increased Syntaxin 4 may be beneficial for enhancing biphasic insulin secretion in a regulated manner. Taken together, these data support the notion that Syntaxin 4-based SNARE complexes are essential for biphasic insulin granule fusion in pancreatic beta-cells.  相似文献   

10.
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.  相似文献   

11.
Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We also investigated whether the antihyperglycemic agent stevioside was able to counteract these effects of palmitate. Clonal alpha-TC1-6 cells were cultured with palmitate in the presence or absence of stevioside. After 72 h, we evaluated glucagon secretion, glucagon content, triglyceride (TG) content, and changes in gene expression. Glucagon secretion was dose-dependently increased after 72-h culture, with palmitate at concentrations >or=0.25 mM (P< 0.05). Palmitate (0.5 mM) enhanced TG content of alpha-cells by 73% (P< 0.01). Interestingly, stevioside (10(-8) and 10(-6) M) reduced palmitate-stimulated glucagon release by 22 and 45%, respectively (P< 0.01). There was no significant change in glucagon content after 72-h culture with palmitate and/or stevioside. Palmitate increased carnitine palmitoyltransferase I (CPT I) mRNA level, whereas stevioside enhanced CPT I, peroxisome proliferator-activated receptor-gamma, and stearoyl-CoA desaturase gene expressions in the presence of palmitate (P<0.05). In conclusion, long-term exposure to elevated fatty acids leads to a hypersecretion of glucagon and an accumulation of TG content in clonal alpha-TC1-6 cells. Stevioside was able to counteract the alpha-cell hypersecretion caused by palmitate and enhanced the expression of genes involved in fatty acid metabolism. This indicates that stevioside may be a promising antidiabetic agent in treatment of type 2 diabetes.  相似文献   

12.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

13.
14.
15.
Mimitin, a novel mitochondrial protein, has been shown to act as a molecular chaperone for the mitochondrial complex I and to regulate ATP synthesis. During Type 1 diabetes development, pro-inflammatory cytokines induce mitochondrial damage in pancreatic β-cells, inhibit ATP synthesis and reduce glucose-induced insulin secretion. Mimitin was expressed in rat pancreatic islets including β-cells and decreased by cytokines. In the ob/ob mouse, a model of insulin resistance and obesity, mimitin expression was down-regulated in liver and brain, up-regulated in heart and kidney, but not affected in islets. To further analyse the impact of mimitin on β-cell function, two β-cell lines, one with a low (INS1E) and another with a higher (MIN6) mimitin expression were studied. Mimitin overexpression protected INS1E cells against cytokine-induced caspase 3 activation, mitochondrial membrane potential reduction and ATP production inhibition, independently from the NF-κB (nuclear factor κB)-iNOS (inducible NO synthase) pathway. Mimitin overexpression increased basal and glucose-induced insulin secretion and prevented cytokine-mediated suppression of insulin secretion. Mimitin knockdown in MIN6 cells had opposite effects to those observed after overexpression. Thus mimitin has the capacity to modulate pancreatic islet function and to reduce cytokine toxicity.  相似文献   

16.
Brain-selective kinase 2 (BRSK2) has been shown to play an essential role in neuronal polarization. In the present study, we show that BRSK2 is also abundantly expressed in pancreatic islets and MIN6 β-cell line. Yeast two-hybrid screening, GST fusion protein pull-down, and co-immunoprecipitation assays reveal that BRSK2 interacts with CDK-related protein kinase PCTAIRE1, a kinase involved in neurite outgrowth and neurotransmitter release. In MIN6 cells, BRSK2 co-localizes with PCTAIRE1 in the cytoplasm and phosphorylates one of its serine residues, Ser-12. Phosphorylation of PCTAIRE1 by BRSK2 reduces glucose-stimulated insulin secretion (GSIS) in MIN6 cells. Conversely, knockdown of BRSK2 by siRNA increases serum insulin levels in mice. Our results reveal a novel function of BRSK2 in the regulation of GSIS in β-cells via a PCTAIRE1-dependent mechanism and suggest that BRSK2 is an attractive target for developing novel diabetic drugs.  相似文献   

17.
18.
We have previously reported that the absence of leptin signaling in β-cells enhances glucose-stimulated insulin secretion and improves glucose tolerance in vivo. To investigate the relevance of β-cell leptin signaling in the context of postprandial or therapeutic insulin secretion, we examined the cross talk between leptin and glucagon-like peptide (GLP)-1 and sulfonylurea actions. Single and size-matched islets isolated from control or pancreas-specific leptin receptor knockout (pancreas-ObR-KO) mice were treated either with GLP-1 or with glibenclamide. Leptin suppressed GLP-1-stimulated intracellular Ca(2+) concentrations ([Ca(2+)](i)) increase that paralleled the decrease in insulin secretion in controls. In contrast, and as expected, the ObR-KO islets were nonresponsive to leptin, and instead, showed a 2.8-fold greater GLP-1-stimulated [Ca(2+)](i) increase and a 1.7-fold greater insulin secretion. Phosphorylation of cAMP-responsive element binding protein was enhanced, and phosphodiesterase enzymatic activity was suppressed in MIN6 β-cells with ObR knockdown compared with controls. The ObR-KO islets also showed significantly higher glibenclamide-induced insulin secretion compared with control islets, whereas [Ca(2+)](i) was similar to the controls. These data support enhanced insulinotropic effects of glucose, GLP-1, and sulfonylureas in the islets lacking leptin signaling with potential therapeutic implications.  相似文献   

19.
Blood glucose homeostasis is mainly achieved by the coordinated function of pancreatic alpha-, beta-, and delta-cells, which secrete glucagon, insulin, and somatostatin, respectively. Each cell type responds to glucose changes with different secretion patterns. Currently, considerable information can be found about the signal transduction mechanisms that lead to glucose-mediated insulin release in the pancreatic beta-cell, mitochondrial activation being an essential step. Increases in glucose stimulate the mitochondrial metabolism, activating the tricarboxylic acid cycle and raising the source of redox electron carrier molecules needed for respiratory ATP synthesis. However, little is known about the glucose-induced mitochondrial response of non-beta-cells and its role in the stimulus-secretion coupling process. This limited information is probably a result of the scarcity of these cells in the islet, the lack of identification patterns, and the technical limitations of conventional methods. In this study, we used flavin adenine dinucleotide redox confocal microscopy as a noninvasive technique to specifically monitor mitochondrial redox responses in immunoidentified alpha-, beta-, and delta-cells in freshly isolated intact islets and in dispersed cultured cells. We have shown that glucose provokes metabolic changes in beta- and delta-cell populations in a dose-dependent manner. Conversely, no significant responses were observed in alpha-cells, despite the sensitivity of their metabolism to drugs acting on the mitochondrial function, and their intact ability to develop Ca2+ signals. Identical results were obtained in islets and in cultures of dispersed cells. Our findings indicate metabolic differences in glucose utilization among the alpha-, beta-, and delta-cell populations, which might be important in the signal transduction events that lead to hormone release.  相似文献   

20.
To analyze cell lineage in the pancreatic islets, we have irreversibly tagged all the progeny of cells through the activity of Cre recombinase. Adult glucagon alpha and insulin beta cells are shown to derive from cells that have never transcribed insulin or glucagon, respectively. Also, the beta-cell progenitors, but not alpha-cell progenitors, transcribe the pancreatic polypeptide (PP) gene. Finally, the homeodomain gene PDX1, which is expressed by adult beta-cells, is also expressed by alpha-cell progenitors. Thus the islet alpha- and beta-cell lineages appear to arise independently during ontogeny, probably from a common precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号