首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25 degrees C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.  相似文献   

2.
Biodegradative arginine decarboxylase is inducible by acid and is derepressed in an hns mutant. Several plasmids from an Escherichia coli library that could complement the hns phenotype were characterized and placed into groups. One group includes plasmids that contain the hns gene and are considered true complements. Another group was found to carry the hfq gene, which encodes the host factor HF-1 for bacteriophage Q beta replication. Plasmids of the third group contain inserts that mapped at 60.2 min on the E. coli chromosome. We identified an open reading frame (stpA) with a deduced amino acid sequence showing more than 60% identity with the sequences of H-NS proteins from several species as being responsible for the hns complementing phenotype of the third group.  相似文献   

3.
The histone-like protein H-NS is a global regulator in Escherichia coli that has been intensively studied in nonpathogenic strains. However, no comprehensive study on the role of H-NS and its paralogue, StpA, in gene expression in pathogenic E. coli has been carried out so far. Here, we monitored the global effects of H-NS and StpA in a uropathogenic E. coli isolate by using DNA arrays. Expression profiling revealed that more than 500 genes were affected by an hns mutation, whereas no effect of StpA alone was observed. An hns stpA double mutant showed a distinct gene expression pattern that differed in large part from that of the hns single mutant. This suggests a direct interaction between the two paralogues and the existence of distinct regulons of H-NS and an H-NS/StpA heteromeric complex. hns mutation resulted in increased expression of alpha-hemolysin, fimbriae, and iron uptake systems as well as genes involved in stress adaptation. Furthermore, several other putative virulence genes were found to be part of the H-NS regulon. Although the lack of H-NS, either alone or in combination with StpA, has a huge impact on gene expression in pathogenic E. coli strains, its effect on virulence is ambiguous. At a high infection dose, hns mutants trigger more sudden lethality due to their increased acute toxicity in murine urinary tract infection and sepsis models. At a lower infectious dose, however, mutants lacking H-NS are attenuated through their impaired growth rate, which can only partially be compensated for by the higher expression of numerous virulence factors.  相似文献   

4.
The tonB gene of Enterobacter aerogenes was cloned, sequenced, and expressed in Escherichia coli. It complemented an E. coli tonB mutant as efficiently as E. coli tonB, except for colicin B and D sensitivities. However, colicin B and D sensitivities were complemented by a derivative in which the aspartate at position 165 was replaced by a glutamine (TonBD-165-->Q) by site-directed mutagenesis. In E. coli, the corresponding amino acid is a glutamine (Q-160) which is known to be altered in most mutants showing suppression of the btuB451 mutation. Fourteen independent btuB451 suppressor mutations in E. aerogenes tonB which all had suffered the same point mutation resulting in a change from glycine to valine at position 239 (G-239-->V) of the C-terminal end of the protein were isolated. The mutation was located within a region which is nonessential for function of E. aerogenes TonB as well as E. coli TonB. A constructed double mutation, expressing a D-165-->Q/G-239-->V derivative, no longer acted as a btuB451 suppressor. However, it restored colicin B and D sensitivities even more efficiently than the D-165-->Q derivative. Corresponding mutations constructed in E. coli tonB, giving rise to Q-160-->D, G-234-->V, and Q-160-->D/G-234-->V derivatives, showed phenotypes comparable to the E. aerogenes mutations. We take this as evidence that at least a functional interaction between the D-165 (Q-160 in E. coli) and the G-239 (G-234 in E. coli) region is necessary for TonB function. The implications of this interaction for functional instability of TonB are discussed.  相似文献   

5.
Evolution of chemotactic-signal transducers in enteric bacteria.   总被引:7,自引:4,他引:3       下载免费PDF全文
M K Dahl  W Boos    M D Manson 《Journal of bacteriology》1989,171(5):2361-2371
The methyl-accepting chemotactic-signal transducers of the enteric bacteria are transmembrane proteins that consist of a periplasmic receptor domain and a cytoplasmic signaling domain. To study their evolution, transducer genes from Enterobacter aerogenes and Klebsiella pneumoniae were compared with transducer genes from Escherichia coli and Salmonella typhimurium. There are at least two functional transducer genes in the nonmotile species K. pneumoniae, one of which complements the defect in serine taxis of an E. coli tsr mutant. The tse (taxis to serine) gene of E. aerogenes also complements an E. coli tsr mutant; the tas (taxis to aspartate) gene of E. aerogenes complements the defect in aspartate taxis, but not the defect in maltose taxis, of an E. coli tar mutant. The sequence was determined for 5 kilobases of E. aerogenes DNA containing a 3' fragment of the cheA gene, cheW, tse, tas, and a 5' fragment of the cheR gene. The tse and tas genes are in one operon, unlike tsr and tar. The cytoplasmic domains of Tse and Tas are very similar to those of E. coli and S. typhimurium transducers. The periplasmic domain of Tse is homologous to that of Tsr, but Tas and Tar are much less similar in this region. However, several short sequences are conserved in the periplasmic domains of Tsr, Tar, Tse, and Tas but not of Tap and Trg, transducers that do not bind amino acids. These conserved regions include residues implicated in amino-acid binding.  相似文献   

6.
7.
The small basic histone-like protein H-NS is known for bacteria to attenuate virulence of several animal pathogens. An hns homologue from E. amylovora was identified by complementing an E. coli hns-mutant strain with a cosmid library from E. amylovora. A 1.6 kb EcoRI-fragment complemented the mucoid phenotype and repressed the ss-glucosidase activity of E. coli PD32. The open reading frame encoding an H-NS-like protein of 134 amino acid was later shown to be located on plasmid pEA29 (McGhee and Jones 2000). A chromosomal hns gene was amplified with PCR consensus primers and localized near galU of E. amylovora. E. amylovora mutants were created by insertion of a resistance cassette, and the intact gene was inserted into a high copy number plasmid for constitutive expression. Purified chromosomal H-NS protein preferentially bound to a DNA fragment from the lsc region and bending was predicted for an adjacent fragment with the rlsB-promoter. Levan production was significantly increased by hns mutations. Synthesis of the capsular exopolysaccharide amylovoran and of levan were reduced, when hns from the E. amylovora plasmid was overexpressed. A mutation in chromosomal hns of E. amylovora increased amylovoran synthesis, and both mutations retarded symptom formation on immature pears.  相似文献   

8.
9.
A bacterial alkaline phosphatase (BAP, the phoA gene product) is primarily responsible for the hydrolysis of the substrates 5-bromo-4-chloro-3-indolylphosphate-p-toluidine (XP) and p-nitrophenyl phosphate (pNPP). Using these substrates and an E. coli phoA mutant, we have cloned Enterobacter aerogenes genes conferring an XP(+) phenotype. Two types of clones were identified based on phenotypic tests and DNA sequences. One of them is a E. aerogenes phoA gene (XP(+), pNPP(+)) as expected; surprisingly the other one was found to be a ushA gene (XP(+), pNPP(-)), which encodes an UDP (uridine 5'-diphosphate)-sugar hydrolase. The E. aerogenes ushA gene shares high sequence identity with ushA of E. coli and the mutationally silent ushA0 gene of Salmonella typhimurium at both the nucleotide (over 79%) and amino acid (over 93%) levels. Expression of the E. aerogenes ushA gene in E. coli produced high level of UDP-sugar hydrolase, as confirmed by TLC (thin layer chromatography) analysis together with a presence of a strong band due to a XP hydrolysis on a polyacrylamide gel.  相似文献   

10.
The DNA binding protein H-NS promotes homologous recombination in Escherichia coli, but the role of its paralog StpA in this process remains unclear. Here we show that an hns mutant, but not an stpA mutant, are marginally defective in conjugational recombination and is sensitive to the double-strand-break-inducing agent bleomycin. Interestingly, the hns stpA double mutant is severely defective in homologous recombination and more bleomycin-sensitive than is the hns or stpA single mutant, indicating that the stpA mutation synergistically enhances the defects of homologous recombination and the increased bleomycin-sensitivity in the hns mutant. In addition, the transduction analysis in the hns stpA double mutant indicated that the stpA mutation also enhances the defect of recombination in the hns mutant. These results suggest that H-NS plays an important role in both homologous recombination and repair of bleomycin-induced damage, while StpA can substitute the H-NS function. The recombination analysis of hns single, stpA single, and hns stpA double mutants in the recBC sbcA and recBC sbcBC backgrounds suggested that the reduction of the hns single or hns stpA double mutants may not be due to the defect in a particular recombination pathway, but may be due to the defect in a common process of the pathways. The model for the functions of H-NS and StpA in homologous recombination and double-strand break repair is discussed.  相似文献   

11.
12.
During the last decade, the hns gene and its product, the H-NS protein, have been extensively studied in Escherichia coli. H-NS-like proteins seem to be widespread in gram-negative bacteria. However, unlike in E. coli and in Salmonella enterica serovar Typhimurium, little is known about their role in the physiology of those organisms. In this report, we describe the isolation of vicH, an hns-like gene in Vibrio cholerae, the etiological agent of cholera. This gene was isolated from a V. cholerae genomic library by complementation of different phenotypes associated with an hns mutation in E. coli. It encodes a 135-amino-acid protein showing approximately 50% identity with both H-NS and StpA in E. coli. Despite a low amino acid conservation in the N-terminal part, VicH is able to cross-react with anti-H-NS antibodies and to form oligomers in vitro. The vicH gene is expressed as a single gene from two promoters in tandem and is induced by cold shock. A V. cholerae wild-type strain expressing a vicHDelta92 gene lacking its 3' end shows pleiotropic alterations with regard to mucoidy and salicin metabolism. Moreover, this strain is unable to swarm on semisolid medium. Similarly, overexpression of the vicH wild-type gene results in an alteration of swarming behavior. This suggests that VicH could be involved in the virulence process in V. cholerae, in particular by affecting flagellum biosynthesis.  相似文献   

13.
In this study we report on an experimental method based on dielectrophoretic analysis to identify changes in four Escherichia coli isogenic strains that differed exclusively in one mutant allele. The dielectrophoretic properties of wild-type cells were compared to those of hns, hha, and hha hns mutant derivatives. The hns and hha genes code respectively for the global regulators Hha and H-NS. The Hha and H-NS proteins modulate gene expression in Escherichia coli and other Gram negative bacteria. Mutations in either hha or hns genes result in a pleiotropic phenotype. A two-shell prolate ellipsoidal model has been used to fit the experimental data, obtained from dielectrophoresis measurements, and to study the differences in the dielectric properties of the bacterial strains. The experimental results show that the mutant genotype can be predicted from the dielectrophoretic analysis of the corresponding cultures, opening the way to the development of microdevices for specific identification. Therefore, this study shows that dielectrophoresis can be a valuable tool to study bacterial populations which, although apparently homogeneous, may present phenotypic variability.  相似文献   

14.
15.
The genes for arylsulfatase (atsA) and tyramine oxidase (tynA) have been mapped in Klebsiella aerogenes by P1 transduction. They are linked to gdhD and trp in the order atsA-tynA-gdhD-trp-pyrF. Complementation analysis using F' episomes from Escherichia coli suggested an analogous location of these genes in E. coli, although arylsulfatase activity was not detected in E. coli. P1 phage and F' episomes were used to create intergeneric hybrid strains of enteric bacteria by transfer of the ats and tyn genes between K. aerogenes, E. coli, and Salmonella typhimurium. Intergeneric transduction of the tynK gene from K. aerogenes to an E. coli restrictionless strain was one to two orders less frequent than that of the leuK gene. The tyramine oxidase of E. coli and S. typhimurium in regulatory activity resemble very closely the enzyme of K. aerogenes. The atsE gene from E. coli was expressed, and latent arylsulfatase protein was formed in K. aerogenes and S typhimurium. The results of tyramine oxidase and arylsulfatase synthesis in intergeneric hybrids of enteric bacteria suggest that the system for regulation of enzyme synthesis is conserved more than the structure or function of enzyme protein during evolution.  相似文献   

16.
A negative regulator gene for synthesis of arylsulfatase in Klebsiella aerogenes was cloned. Deletion analysis showed that the regulator gene was located within a 1.6-kb cloned segment. Transfer of the plasmid, which contains the cloned fragment, into constitutive atsR mutant strains of K. aerogenes resulted in complementation of atsR; the synthesis of arylsulfatase was repressed in the presence of inorganic sulfate or cysteine, and this repression was relieved, in each case, by the addition of tyramine. The nucleotide sequence of the 1.6-kb fragment was determined. From the amino acid sequence deduced from the DNA sequence, we found two open reading frames. One of them lacked the N-terminal region but was highly homologous to the gene which codes for diadenosine tetraphosphatase (apaH) in Escherichia coli. The other open reading frame was located counterclockwise to the apaH-like gene. This gene was highly homologous to the gene which codes for dihydrofolate reductase (folA) in E. coli. We detected 30 times more activity of dihydrofolate reductase in the K. aerogenes strains carrying the plasmid, which contains the arylsulfatase regulator gene, than in the strains without plasmid. Further deletion analysis showed that the K. aerogenes folA gene is consistent with the essential region required for the repression of arylsulfatase synthesis. Transfer of a plasmid containing the E. coli folA gene into atsR mutant cells of K. aerogenes resulted in repression of the arylsulfatase synthesis. Thus, we conclude that the folA gene codes a negative regulator for the ats operon.  相似文献   

17.
A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.  相似文献   

18.
Escherichia coli, Enterobacter aerogenes and S. schottmuelleri were isolated from the large intestine of a bacteriocarrier. E. coli and E. aerogenes strains proved to be resistant to a number of antibiotics. Plasmids were detected in DNA preparations obtained from E. coli strains. After the hybridization of these E. coli strains with E. coli C600 5K and S. schottmuelleri at 28 degrees C the transfer of resistance to kanamycin was found to occur. From some of the transconjugates thus obtained resistance to kanamycin was transferred to E. aerogenes. This resistance was found to be controlled by the plasmid with a molecular weight exceeding 2 Md. The fact that S. schottmuelleri in the carrier's body retained their sensitivity to antibiotics can be explained by the absence of the transfer of plasmid Kmr at a temperature exceeding 28 degrees C and by the existence of the infective agent in an ecological niche other than that of E. coli.  相似文献   

19.
In Escherichia coli, prolipoprotein signal peptidase is encoded by the lsp gene, which is organized into an operon consisting of ileS, lsp, and three open reading frames, designated genes x, orf-149, and orf-316. The Enterobacter aerogenes lsp gene was cloned and expressed in E. coli. The nucleotide sequence of the Enterobacter aerogenes lsp gene and a part of its flanking sequences were determined. A high degree of homology was found between the E. coli ileS-lsp operon and the corresponding genes in Enterobacter aerogenes. Furthermore, the same five genes which constitute an operon in E. coli were found in Enterobacter aerogenes in the same order.  相似文献   

20.
Escherichia coli nucleoid-associated H-NS protein interacts with the Hha protein, a member of a new family of global modulators that also includes the YmoA protein from Yersinia enterocolitica. This interaction has been found to be involved in the regulation of the expression of the toxin alpha-hemolysin. In this study, we further characterize the interaction between H-NS and Hha. We show that the presence of DNA in preparations of copurified His-Hha and H-NS is not directly implicated in the interaction between the proteins. The precise molecular mass of the H-NS protein retained by Hha, obtained by mass spectrometry analysis, does not show any posttranslational modification other than removal of the N-terminal Met residue. We constructed an H-NS-His recombinant protein and found that, as expected, it interacts with Hha. We used a Ni(2+)-nitrilotriacetic acid agarose method for affinity chromatography copurification of proteins to identify the H-NS protein of Y. enterocolitica. We constructed a six-His-YmoA recombinant protein derived from YmoA, the homologue of Hha in Y. enterocolitica, and found that it interacts with Y. enterocolitica H-NS. We also cloned and sequenced the hns gene of this microorganism. In the course of these experiments we found that His-YmoA can also retain H-NS from E. coli. We also found that the hns gene of Y. enterocolitica can complement an hns mutation of E. coli. Finally, we describe for the first time systematic characterization of missense mutant alleles of hha and truncated Hha' proteins, and we report a striking and previously unnoticed similarity of the Hha family of proteins to the oligomerization domain of the H-NS proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号