共查询到20条相似文献,搜索用时 0 毫秒
1.
Ashish Dhir Emanuele Buratti Maria A van Santen Reinhard Lührmann Francisco E Baralle 《The EMBO journal》2010,29(4):749-760
Abundance of pseudo splice sites in introns can potentially give rise to innumerable pseudoexons, outnumbering the real ones. Nonetheless, these are efficiently ignored by the splicing machinery, a process yet to be understood completely. Although numerous 5′ splice site‐like sequences functioning as splicing silencers have been found to be enriched in predicted human pseudoexons, the lack of active pseudoexons pose a fundamental challenge to how these U1snRNP‐binding sites function in splicing inhibition. Here, we address this issue by focusing on a previously described pathological ATM pseudoexon whose inhibition is mediated by U1snRNP binding at intronic splicing processing element (ISPE), composed of a consensus donor splice site. Spliceosomal complex assembly demonstrates inefficient A complex formation when ISPE is intact, implying U1snRNP‐mediated unproductive U2snRNP recruitment. Furthermore, interaction of SF2/ASF with its motif seems to be dependent on RNA structure and U1snRNP interaction. Our results suggest a complex combinatorial interplay of RNA structure and trans‐acting factors in determining the splicing outcome and contribute to understanding the intronic splicing code for the ATM pseudoexon. 相似文献
2.
Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. 总被引:6,自引:0,他引:6
下载免费PDF全文

M Gniadkowski M Hemmings-Mieszczak U Klahre H X Liu W Filipowicz 《Nucleic acids research》1996,24(4):619-627
Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U). 相似文献
3.
Extrachromosomal elements as possible agents of adaptation and development. 总被引:16,自引:5,他引:16
下载免费PDF全文

D Reanney 《Microbiological reviews》1976,40(3):552-590
4.
Kupfer DM Drabenstot SD Buchanan KL Lai H Zhu H Dyer DW Roe BA Murphy JW 《Eukaryotic cell》2004,3(5):1088-1100
Genomic sequences and expressed sequence tag data for a diverse group of fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, Neurospora crassa, and Cryptococcus neoformans) provided the opportunity to accurately characterize conserved intronic elements. An examination of large intron data sets revealed that fungal introns in general are short, that 98% or more of them belong to the canonical splice site (ss) class (5'GU...AG3'), and that they have polypyrimidine tracts predominantly in the region between the 5' ss and the branch point. Information content is high in the 5' ss, branch site, and 3' ss regions of the introns but low in the exon regions adjacent to the introns in the fungi examined. The two yeasts have broader intron length ranges and correspondingly higher intron information content than the other fungi. Generally, as intron length increases in the fungi, so does intron information content. Homologs of U2AF spliceosomal proteins were found in all species except for S. cerevisiae, suggesting a nonconventional role for U2AF in the absence of canonical polypyrimidine tracts in the majority of introns. Our observations imply that splicing in fungi may be different from that in vertebrates and may require additional proteins that interact with polypyrimidine tracts upstream of the branch point. Theoretical protein homologs for Nam8p and TIA-1, two proteins that require U-rich regions upstream of the branch point to function, were found. There appear to be sufficient differences between S. cerevisiae and S. pombe introns and the introns of two filamentous members of the Ascomycota and one member of the Basidiomycota to warrant the development of new model organisms for studying the splicing mechanisms of fungi. 相似文献
5.
The ins and outs of protein splicing elements 总被引:7,自引:0,他引:7
Protein splicing involves the removal of an internal protein sequence from a precursor molecule and the ligation of the two flanking sequences to produce a mature protein product, in a post-translational event analogous to the removal of an intron from rRNA. Protein splicing introns, or‘inteins’appear to be a novel type of genetic element capable of mediating gene conversion of an‘intein-less’allele, and hence promoting their own dissemination. The mechanism by which protein splicing is achieved is probably entirety encoded within the internal protein sequence, or intein, and does not require other accessory molecules. Although the concept of protein splicing inteins as selfish genetic elements of no immediate consequence to the host organism has emerged, this interpretation is questioned by recent evidence that in at least one example there appears to have been selection for protein splicing. 相似文献
6.
Michael K. Ameriks Frank U. Axe Scott D. Bembenek James P. Edwards Yin Gu Lars Karlsson Mike Randal Siquan Sun Robin L. Thurmond Jian Zhu 《Bioorganic & medicinal chemistry letters》2009,19(21):6131-6134
A crystal structure of 1 bound to a Cys25Ser mutant of cathepsin S helped to elucidate the binding mode of a previously disclosed series of pyrazole-based CatS inhibitors and facilitated the design of a new class of arylalkyne analogs. Optimization of the alkyne and tetrahydropyridine portions of the pharmacophore provided potent CatS inhibitors (IC50 = 40–300 nM), and an X-ray structure of 32 revealed that the arylalkyne moiety binds in the S1 pocket of the enzyme. 相似文献
7.
Use of minigene systems to dissect alternative splicing elements 总被引:4,自引:0,他引:4
Cooper TA 《Methods (San Diego, Calif.)》2005,37(4):331-340
Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. The splicing efficiency of individual exons is determined by multiple features involving gene architecture, a variety of cis-acting elements within the exons and flanking introns, and interactions with components of the basal splicing machinery (called the spliceosome) and auxiliary regulatory factors which transiently co-assemble with the spliceosome. Both alternative and constitutive exons are recognized by multiple weak protein:RNA interactions and different exons differ in the interactions which are determinative for exon usage. Alternative exons are often regulated according to cell-specific patterns and regulation is mediated by specific sets of cis-acting elements and trans-acting factors. Transient expression of minigenes is a commonly used in vivo assay to identify the intrinsic features of a gene that control exon usage, identify specific cis-acting elements that control usage of constitutive and alternative exons, identify cis-acting elements that control cell-specific usage of alternative exons, and once regulatory elements have been identified, to identify the trans-acting factors that bind to these elements and modulate splicing. This chapter describes approaches and strategies for using minigenes to define the cis-acting elements that determine splice site usage and to identify and characterize the trans-acting factors that bind to these elements and regulate alternative splicing. 相似文献
8.
Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct protein products. This is accomplished by the differential recognition of splice sites in the pre-mRNA, often regulated in a tissue- or development-specific manner. Alternative splicing constitutes not only an important mechanism in controlling gene expression in humans, but also an essential source for increasing proteome diversity. In this review we summarize the underlying mechanistic principles, focussing on the cis-acting regulatory elements. In particular, the role of short sequence repeats, which are often polymorphic, in splicing regulation is discussed. 相似文献
9.
Ab initio prediction of functional exon splicing enhancer (ESE) elements based on RNA sequences present a challenge in the evaluation of the functional impacts of human genetic polymorphisms on splicing. To better understand the behavior of ESEs, we studied their distribution in human exons and introns for four known SR protein-binding motifs: SF2/SAF, SC35, SRp40, and SRp55. ESEs are enriched in regions in exons that are close to the splice sites, especially in the region 80 to 120 bases away from the ends of splice acceptor sites. Significant enrichment of ESEs is associated with weak splice acceptor sites but not weak donor sites. ESE density decreases at the 3 ends of long exons. ESEs are also enriched in introns with weak donor or acceptor sites. These characteristics of ESEs may help to predict functional ESE sites in RNA sequences. 相似文献
10.
Danielle K. Wiener Alice Lee-Dutra Scott Bembenek Steven Nguyen Robin L. Thurmond Siquan Sun Lars Karlsson Cheryl A. Grice Todd K. Jones James P. Edwards 《Bioorganic & medicinal chemistry letters》2010,20(7):2379-2382
A series of tetrahydropyrido-pyrazole cathepsin S (CatS) inhibitors with thioether acetamide functional groups were prepared with the goal of improving upon the cellular activity of amidoethylthioethers. This Letter describes altered amide connectivity, in conjunction with changes to other binding elements, resulting in improved potency, as well as increased knowledge of the relationship between this chemotype and human CatS activity. 相似文献
11.
12.
Competition for DNA steroid response elements as a possible mechanism for neuroendocrine integration
Donald W. Pfaff Mona M. Freidin X. Sharon Wu-Peng Jun Yin Yuan-Shan Zhu 《The Journal of steroid biochemistry and molecular biology》1994,49(4-6):373-379
For the analysis of a simple steroid-dependent mating behavior, careful response definition, complete neural circuit delineation and placement of estrogen-responsive cells within this circuit have been accomplished. Molecular studies of two relevant genes have emphasized DNA/RNA hybridization assays nd DNA binding techniques. For both the rat preproenkephalin gene and the gene for the progesterone receptor, a strong induction by estrogen, tissue specificity of expression and a sex difference in regulation are prominent phenomena. On the rat preproenkephalin promoter, estrogen (ER) and thyroid receptors may compete for a DNA binding site. Likewise, progesterone (PR) and glucocorticoid receptors may compete for the same sites. On the rat PR gene, interactions between ER and AP-1 binding proteins are of special interest. Such interactions could underlay competitions and synergies between steroid hormones and neurally signalled events in the environment. 相似文献
13.
14.
Steffen Erkelenz Stephan Theiss Marianne Otte Marek Widera Jan Otto Peter Heiner Schaal 《Nucleic acids research》2014,42(16):10681-10697
Effective splice site selection is critically controlled by flanking splicing regulatory elements (SREs) that can enhance or repress splice site use. Although several computational algorithms currently identify a multitude of potential SRE motifs, their predictive power with respect to mutation effects is limited. Following a RESCUE-type approach, we defined a hexamer-based ‘HEXplorer score’ as average Z-score of all six hexamers overlapping with a given nucleotide in an arbitrary genomic sequence. Plotted along genomic regions, HEXplorer score profiles varied slowly in the vicinity of splice sites. They reflected the respective splice enhancing and silencing properties of splice site neighborhoods beyond the identification of single dedicated SRE motifs. In particular, HEXplorer score differences between mutant and reference sequences faithfully represented exonic mutation effects on splice site usage. Using the HIV-1 pre-mRNA as a model system highly dependent on SREs, we found an excellent correlation in 29 mutations between splicing activity and HEXplorer score. We successfully predicted and confirmed five novel SREs and optimized mutations inactivating a known silencer. The HEXplorer score allowed landscaping of splicing regulatory regions, provided a quantitative measure of mutation effects on splice enhancing and silencing properties and permitted calculation of the mutationally most effective nucleotide. 相似文献
15.
Knowledge of the functional cis-regulatory elements that regulate constitutive and alternative pre-mRNA splicing is fundamental for biology and medicine. Here we undertook a genome-wide comparative genomics approach using available mammalian genomes to identify conserved intronic splicing regulatory elements (ISREs). Our approach yielded 314 ISREs, and insertions of ~70 ISREs between competing splice sites demonstrated that 84% of ISREs altered 5′ and 94% altered 3′ splice site choice in human cells. Consistent with our experiments, comparisons of ISREs to known splicing regulatory elements revealed that 40%–45% of ISREs might have dual roles as exonic splicing silencers. Supporting a role for ISREs in alternative splicing, we found that 30%–50% of ISREs were enriched near alternatively spliced (AS) exons, and included almost all known binding sites of tissue-specific alternative splicing factors. Further, we observed that genes harboring ISRE-proximal exons have biases for tissue expression and molecular functions that are ISRE-specific. Finally, we discovered that for Nova1, neuronal PTB, hnRNP C, and FOX1, the most frequently occurring ISRE proximal to an alternative conserved exon in the splicing factor strongly resembled its own known RNA binding site, suggesting a novel application of ISRE density and the propensity for splicing factors to auto-regulate to associate RNA binding sites to splicing factors. Our results demonstrate that ISREs are crucial building blocks in understanding general and tissue-specific AS regulation and the biological pathways and functions regulated by these AS events. 相似文献
16.
17.
Titin, a sarcomeric protein expressed primarily in striated muscles, is responsible for maintaining the structure and biomechanical properties of muscle cells. Cardiac titin undergoes developmental size reduction from 3.7 megadaltons in neonates to primarily 2.97 megadaltons in the adult. This size reduction results from gradually increased exon skipping between exons 50 and 219 of titin mRNA. Our previous study reported that Rbm20 is the splicing factor responsible for this process. In this work, we investigated its molecular mechanism. We demonstrate that Rbm20 mediates exon skipping by binding to titin pre-mRNA to repress the splicing of some regions; the exons/introns in these Rbm20-repressed regions are ultimately skipped. Rbm20 was also found to mediate intron retention and exon shuffling. The two Rbm20 speckles found in nuclei from muscle tissues were identified as aggregates of Rbm20 protein on the partially processed titin pre-mRNAs. Cooperative repression and alternative 3′ splice site selection were found to be used by Rbm20 to skip different subsets of titin exons, and the splicing pathway selected depended on the ratio of Rbm20 to other splicing factors that vary with tissue type and developmental age. 相似文献
18.
Stephanie J. Culler Kevin G. Hoff Rodger B. Voelker J. Andrew Berglund Christina D. Smolke 《Nucleic acids research》2010,38(15):5152-5165
Despite the critical role of pre-mRNA splicing in generating proteomic diversity and regulating gene expression, the sequence composition and function of intronic splicing regulatory elements (ISREs) have not been well elucidated. Here, we employed a high-throughput in vivo Screening PLatform for Intronic Control Elements (SPLICE) to identify 125 unique ISRE sequences from a random nucleotide library in human cells. Bioinformatic analyses reveal consensus motifs that resemble splicing regulatory elements and binding sites for characterized splicing factors and that are enriched in the introns of naturally occurring spliced genes, supporting their biological relevance. In vivo characterization, including an RNAi silencing study, demonstrate that ISRE sequences can exhibit combinatorial regulatory activity and that multiple trans-acting factors are involved in the regulatory effect of a single ISRE. Our work provides an initial examination into the sequence characteristics and function of ISREs, providing an important contribution to the splicing code. 相似文献
19.
20.
Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse 总被引:8,自引:1,他引:8
Alternative splicing is a major contributor to genomic complexity, disease, and development. Previous studies have captured some of the characteristics that distinguish alternative splicing from constitutive splicing. However, most published work only focuses on skipped exons and/or a single species. Here we take advantage of the highly curated data in the MAASE database (see related paper in this issue) to analyze features that characterize different modes of splicing. Our analysis confirms previous observations about alternative splicing, including weaker splicing signals at alternative splice sites, higher sequence conservation surrounding orthologous alternative exons, shorter exon length, and more frequent reading frame maintenance in skipped exons. In addition, our study reveals potentially novel regulatory principles underlying distinct modes of alternative splicing and a role of a specific class of repeat elements (transposons) in the origin/evolution of alternative exons. These features suggest diverse regulatory mechanisms and evolutionary paths for different modes of alternative splicing. 相似文献