首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large body of evidence suggests that corneal allograft rejection is mediated by a type 1 Th cell response and that deviation toward type 2 immunity favors graft survival. However, clinical observations indicate that patients with severe ocular allergies have increased risk of corneal allograft rejection. We used a mouse model of atopic conjunctivitis to evaluate the effects of Th2 immune deviation on corneal allograft survival and possible mechanisms of graft rejection. Our results reveal the following novel findings: 1) atopic conjunctivitis promotes systemic Th2 immune responses to corneal graft donor alloantigens; 2) corneal allografts in atopic host eyes have an increased incidence and swifter tempo of rejection; 3) increased rejection is associated with alterations in systemic T cell-mediated responses to donor alloantigens; and 4) corneal allograft rejection in atopic hosts does not require the direct involvement of infiltrating eosinophils.  相似文献   

2.
The role of immune response to tissue-specific Ags in transplant rejection is poorly defined. We have previously reported that transplantation of cardiac allografts triggers a CD4(+) Th1 cell response to cardiac myosin (CM), a major contractile protein of the heart, and that pretransplant activation of proinflammatory CM-specific T cells accelerates rejection. In this study, we show that administration of CM together with IFA (CM/IFA) can prevent acute rejection of an allogeneic heart transplant. Prolongation of cardiac graft survival is associated with activation of CM- and allo-specific T cells secreting type 2 cytokines (IL-4, IL-5) and reduction of the frequency of proinflammatory IFN-gamma-secreting (type 1) alloreactive T cells. Blocking of IL-4 cytokine with Abs abrogates the prolongation. CM/IFA treatment prevents acute rejection of MHC class I-mismatched, but not fully mismatched grafts. However, if donor heart is devoid of MHC class II expression, CM-IFA administration delays rejection of fully allogeneic cardiac transplants. This finding suggests that the effect of CM modulation depends on the type (direct vs indirect) and strength of recipient's CD4(+) T cell alloresponse. Our results underscore the important role of host immunity to tissue-specific Ags in the rejection of an allograft. This study demonstrates that modulation of the immune response to a tissue-specific Ag can significantly prolong cardiac allograft survival, an observation that may have important implications for the development of novel selective immune therapies in transplantation.  相似文献   

3.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

4.

Background

While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.

Methods

Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.

Results

Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.

Conclusion

Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine in vitro; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.  相似文献   

5.
Combined CXCR3/CCR5 blockade attenuates acute and chronic rejection   总被引:1,自引:0,他引:1  
Chemokine-chemokine receptor interactions orchestrate mononuclear cells recruitment to the allograft, leading to acute and chronic rejection. Despite biologic redundancy, several experimental studies have demonstrated the importance of CXCR3 and CCR5 in acute rejection of allografts. In these studies, deficiency or blockade of CXCR3 or CCR5 led to prolongation of allograft survival, yet allografts were ultimately lost to acute rejection. Given the above findings and the specificity of mononuclear cells bearing CXCR3 and CCR5, we hypothesized that combined blockade of CXCR3 and CCR5 will lead to indefinite (>100 days) graft survival in a full MHC-mismatched murine cardiac allograft model. The donor hearts in the control group were rejected in 6 +/- 1 days after transplantation. Combined blockade of CXCR3 and CCR5 prolonged allograft survival >15-fold vs the control group; all allografts survived for >100 days. More importantly, the donor hearts did not display any intimal lesions characteristic of chronic rejection. Further analysis of the donor hearts in the CXCR3/CCR5 blockade group demonstrated graft infiltration with CD4(+)CD25(+) T cells expressing the Foxp3 gene. Depletion of CD25(+) cells in the combined CXCR3 and CCR5 blockade group resulted in acute rejection of the allografts in 22 +/- 2 days. Combined CXCR3 and CCR5 blockade also reduced alloantigen-specific T lymphocyte proliferation. Combined CXCR3 and CCR5 blockade is effective in preventing acute and chronic rejection in a robust murine model. This effect is mediated, in part, by CD25(+) regulatory T cell recruitment and control of T lymphocyte proliferation.  相似文献   

6.
Bronchiolitis obliterans syndrome (BOS) is the major limitation to survival post-lung transplantation and is characterized by a persistent peribronchiolar inflammation that eventually gives way to airway fibrosis/obliteration. Acute rejection is the main risk factor for the development of BOS and is characterized by a perivascular/bronchiolar leukocyte infiltration. The specific mechanism(s) by which these leukocytes are recruited have not been elucidated. The CXC chemokines (monokine induced by IFN-gamma (MIG)/CXC chemokine ligand (CXCL)9, IP-10/CXCL10, and IFN-inducible T cell alpha chemoattractant (ITAC)/CXCL11) act through their shared receptor, CXCR3. Because they are potent leukocyte chemoattractants and are involved in other inflammation/fibroproliferative diseases, we hypothesized that the expression of these chemokines during an allogeneic response promotes the persistent recruitment of mononuclear cells, leading to chronic lung rejection. We found that elevated levels of MIG/CXCL9, IFN-inducible protein 10 (IP-10)/CXCL10, and ITAC/CXCL11 in human bronchoalveolar lavage fluid were associated with the continuum from acute to chronic rejection. Translational studies in a murine model demonstrated increased expression of MIG/CXCL9, IP-10/CXCL10, and ITAC/CXCL11 paralleling the recruitment of CXCR3-expressing mononuclear cells. In vivo neutralization of CXCR3 or its ligands MIG/CXCL9 and IP-10/CXCL10 decreased intragraft recruitment of CXCR3-expressing mononuclear cells and attenuated BOS. This supports the notion that ligand/CXCR3 biology plays an important role in the recruitment of mononuclear cells, a pivotal event in the pathogenesis of BOS.  相似文献   

7.
IL-17A is a proinflammatory cytokine that has received attention for its role in the pathogenesis of several autoimmune diseases. IL-17A has also been implicated in cardiac and renal allograft rejection. Accordingly, we hypothesized that depletion of IL-17A would enhance corneal allograft survival. Instead, our results demonstrate that blocking IL-17A in a mouse model of keratoplasty accelerated the tempo and increased the incidence of allograft rejection from 50 to 90%. We describe a novel mechanism by which CD4(+)CD25(+) regulatory T cells (Tregs) respond to IL-17A and enhance corneal allograft survival. Our findings suggest the following: 1) IL-17A is necessary for ocular immune privilege; 2) IL-17A is not required for the induction of anterior chamber-associated immune deviation; 3) Tregs require IL-17A to mediate a contact-dependent suppression; 4) corneal allograft Tregs suppress the efferent arm of the immune response and are Ag specific; 5) Tregs are not required for corneal allograft survival beyond day 30; and 6) corneal allograft-induced Treg-mediated suppression is transient. Our findings identify IL-17A as a cytokine essential for the maintenance of corneal immune privilege and establish a new paradigm whereby interplay between IL-17A and CD4(+)CD25(+) Tregs is necessary for survival of corneal allografts.  相似文献   

8.
Transplant rejection is mediated primarily by adaptive immune cells such as T cells and B cells. The T and B cells are also responsible for the specificity and memory of the rejection response. However, destruction of allografts involves many other cell types including cells in the innate immune system. As the innate immune cells do not express germline-encoded cell surface receptors that directly recognize foreign Ags, these cells are thought to be recruited by T cells to participate in the rejection response. In this study, we examined the alloreactivity of the innate NK cells in Rag(-/-) mice using a stringent skin transplant model and found that NK cells at a resting state readily reject allogeneic cells, but not the skin allografts. We also found that IL-15, when preconjugated to its high affinity IL-15Ralpha-chain, is remarkably potent in stimulating NK cells in vivo, and NK cells stimulated by IL-15 express an activated phenotype and are surprisingly potent in mediating acute skin allograft rejection in the absence of any adaptive immune cells. Furthermore, NK cell-mediated graft rejection does not show features of memory responses. Our data demonstrate that NK cells are potent alloreactive cells when fully activated and differentiated under certain conditions. This finding may have important clinical implications in models of transplantation and autoimmunity.  相似文献   

9.
Interleukin (IL)-4 is a key cytokine in T-helper type 2 (Th2) immune response. We have constructed a dimeric IL-4 molecule consisting of the murine IL-4 and the murine Fc part of IgG2a. We first tested the biological activity of the chimeric protein by in vitro studies using isolated murine spleen cells. IL-4-Ig was found to downregulate LPS-induced IFN-gamma and TNF-alpha production. The immunomodulatory potential of the fusion protein was also analyzed in non-obese diabetic (NOD) mice, an animal model for human type 1 diabetes. Female NOD mice aged 10 weeks were treated once with cyclophosphamide to accelerate and synchronize the progression of insulitis. Treatment with IL-4-Ig induced strong modulation of the pancreatic cytokine balance. Expression was downregulated for both Th1-specific cytokine IFN-gamma and the Th2-specific cytokine IL-10. IL-12p40 expression was only slightly affected. Interestingly, infiltration increased in the islets of IL-4-Ig-treated animals, and therefore did not correlate with the decreased IFN-gamma expression. Hence, IL-4-Ig did not prevent the progression from peri- to intra-insulitis, but suppressed inflammatory cytokine production. In most experiments, the biological activity of IL-4-Ig and IL-4 was comparable. We conclude that treatment with the chimeric protein IL-4-Ig effectively downregulates Th1 responses but simultaneously augments intra-islet infiltration.  相似文献   

10.
Kidney transplantation to treat end-stage renal disease has evolved rapidly from the first successful transplantations to the current widespread use of grafts from both cadaveric and living donors. But acute rejection is still a strong risk factor for chronic rejection in recipients of renal grafts. To investigate possible mechanisms, we describe a comparison between differentially proteins expression and immune markers profile (IL-2, IL-4, IL-6, and CRP) of acute rejection and the controls. Through quantitative real-time RT-PCR confirmation, PDIA3 mRNA and protein expression levels in serum and transplanted kidney in experiment group was significantly (P < 0.05) higher than that in control group. Immunity analysis showed that plasma IL-2, IL-4, IL-6, and CRP levels were higher in experimental rats than those in control rats. Our data thus indicate that PDIA3 might be potentially involve into the occurence and development of acute rejection response in renal transplantation and increased plasma IL-2, IL-4, IL-6, and CRP levels play an important role to prevent acute kidney allograft rejection in rats.  相似文献   

11.
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disparate skin allografts but, surprisingly, not in IL-17A-deficient recipients. We attested that IL-17A was not required for IL-2-mediated Treg expansion, intragraft recruitment or suppressive capacities. Instead, IL-17A prevented allograft rejection by inhibiting Th1 alloreactivity independently of Tregs. Indeed, T-bet expression of naive alloreactive CD4+ T cells and the subsequent Th1 immune response was significantly enhanced in IL-17A deficient mice. Our results illustrate for the first time a protective role of IL-17A in CD4+-mediated allograft rejection process.  相似文献   

12.
The biological response to IL-12 is mediated through specific binding to a high affinity receptor complex composed of at least two subunits (designated IL-12Rbeta1 and IL-12Rbeta2) that are expressed on NK cells and activated T cells. The selective loss of IL-12Rbeta2 expression during Th2 T cell differentiation suggests that regulation of this receptor component may govern IL-12 responsiveness. In murine assays, down-regulation of IL-12Rbeta2 expression can be prevented by treatment with IFN-gamma, indicating that receptor expression and hence IL-12 responsiveness may be regulated, at least in part, by the local cytokine milieu. In this study, we report that cellular expression of both IL-12Rbeta1 and beta2 mRNA is increased in the lymph nodes of naive mice following systemic administration of murine rIL-12 (rmIL-12). Changes in IL-12R mRNA were associated with increased IFN-gamma secretion following ex vivo activation of lymph node cells with rmIL-12, indicating the presence of a functional receptor complex. Expression of IL-12R mRNA was not restricted to lymph node T cells, and its autocrine regulation was independent of secondary IFN-gamma secretion. Data from fractionated lymph node cells as well as rmIL-12-treated B cell-deficient mice suggest that IL-12-responsive B cells may represent an alternative cellular source for IFN-gamma production. However, the strength of the biological response to rmIL-12 is not governed solely by receptor expression, as rmIL-12-induced IFN-gamma secretion from cultured lymph node cells is accessory cell dependent and can be partially blocked by inhibition of B7 costimulation.  相似文献   

13.
Little is known about the function of natural IgM autoantibodies, especially that of IgM anti-leukocyte autoantibodies (IgM-ALA). Natural IgM-ALA are present at birth and characteristically increase during inflammatory and infective conditions. Our prior clinical observations and those of other investigators showing fewer rejections in renal and cardiac allografts transplanted into recipients with high levels of IgM-ALA led us to investigate whether IgM-ALA regulate the inflammatory response. In this article, we show that IgM, in physiologic doses, inhibit proinflammatory cells from proliferating and producing IFN-γ and IL-17 in response to alloantigens (MLR), anti-CD3, and the glycolipid α-galactosyl ceramide. We showed in an IgM knockout murine model, with intact B cells and regulatory T cells, that there was more severe inflammation and loss of function in the absence of IgM after renal ischemia reperfusion injury and cardiac allograft rejection. Replenishing IgM in IgM knockout mice or increasing the levels of IgM-ALA in wild-type B6 mice significantly attenuated the inflammation in both of these inflammatory models that involve IFN-γ and IL-17. The protective effect on renal ischemia reperfusion injury was not observed using IgM preadsorbed with leukocytes to remove IgM-ALA. We provide data to show that the anti-inflammatory effect of IgM is mediated, in part, by inhibiting TLR-4-induced NF-κB translocation into the nucleus and inhibiting differentiation of activated T cells into Th-1 and Th-17 cells. These observations highlight the importance of IgM-ALA in regulating excess inflammation mediated by both innate and adaptive immune mechanisms and where the inflammatory response involves Th-17 cells that are not effectively regulated by regulatory T cells.  相似文献   

14.
It has been proposed that the development of lung fibrosis is associated with a T helper type 2 response, mainly characterized by IL-4 and IL-13 production. We investigated the potential role of type 2 immune polarization in the silicotic process and examined the pulmonary response to silica particles in mice genetically deficient for IL-4. We found that IL-4(-/-) mice were not protected against the development of silicosis, suggesting that IL-4 is not essential for the development of this fibrotic disease. By evaluating the intensity of silica-induced lung fibrosis in mice deficient for IL-4 receptor alpha (IL-4Ralpha), we showed that the establishment of pulmonary fibrosis was independent of both IL-4 and IL-13. Strong impairment of the type 2 immune response (IgG(1)) in the lungs of IL-4(-/-) and IL-4Ralpha(-/-) mice did not affect the development of the disease. Measurement of IL-13alpha2 receptor expression and IgG(2a), IL-12p70, and IFN-gamma levels in silica-treated IL-4(-/-) and IL-4Ralpha(-/-) animals showed that the development of silicosis was not related to an IL-13 signaling pathway or a switch to a type 1 response in deficient animals. Our data clearly indicate that the type 2 immune response associated with silicosis in mice is not required for the development of this inflammatory and fibrotic disease.  相似文献   

15.
Inflammatory bowel disease is a chronic inflammatory response of the gastrointestinal tract mediated in part by an aberrant response to intestinal microflora. Expression of IL-23 subunits p40 and p19 within cells of the innate immune system plays a central role in the development of lower bowel inflammation in response inflammatory challenge. The NF-kappaB subunit c-Rel can regulate expression of IL-12/23 subunits suggesting that it could have a critical role in mediating the development of chronic inflammation within the lower bowel. In this study, we have analyzed the role of c-Rel within the innate immune system in the development of lower bowel inflammation, in two well-studied models of murine colitis. We have found that the absence of c-Rel significantly impaired the ability of Helicobacter hepaticus to induce colitis upon infection of RAG-2-deficient mice, and ameliorated the ability of CD4(+)CD45RB(high) T cells to induce disease upon adoptive transfer into RAG-deficient mice. The absence of c-Rel interfered with the expression of IL-12/23 subunits both in cultured primary macrophages and within the colon. Thus, c-Rel plays a critical role in regulating the innate inflammatory response to microflora within the lower bowel, likely through its ability to modulate expression of IL-12/23 family members.  相似文献   

16.
During the proliferative burst after Ag recognition, T cells express cell-surface, high-affinity IL-2R. The importance of IL-2R+ T cells in supporting/mediating tissue injury has been documented by the ability of mAb anti-IL2R therapies to prevent allograft rejection and autoimmunity. The delayed-type hypersensitivity (DTH) response, an experimental model of T-dependent immunity, offers the possibility of studying responses mounted against defined Ag. We previously reported that the chimeric IL-2 toxin (DAB486-IL-2) prevents DTH responses and selectively eliminates activated IL-2R bearing CD4 and CD8 T cells from lymph nodes draining the site of inflammation. We have examined the duration of immunosuppression and relative specificity of action of DAB486-IL-2 and anti-CD3 mAb for Ag-activated clones in a murine model of DTH using two different noncross-reacting haptens. Treatment with DAB486-IL-2 generates a state of selective unresponsiveness to subsequent challenge with the hapten introduced during the therapeutic period. Immediately after cessation of DAB486-IL-2 therapy, immunization with an unrelated hapten induces a normal vigorous immune response. By comparison, anti-CD3 mAb treatment causes a broad immunosuppression because unrelated haptens introduced after anti-CD3 therapy do not evoke a vigorous immune response. After cessation of DAB486-IL-2 toxin treatment response to the hapten is eventually restored probably by cells trafficking from the thymus, because thymectomized hosts remain unresponsive to the hapten. Taken together these data reinforce the role of the IL-2R as an important target for immunosuppression in T cell-mediated immune reactions. DAB-486-IL-2 treatment confers highly selective immunosuppression.  相似文献   

17.
Metastatic renal cell carcinoma (RCC) responds poorly to chemo- or radiation therapy but appears to respond to systemic immunotherapy (i.e., IL-2 and/or IFN-alpha), albeit with only 5-10% durable response. The CXCR3/CXCR3 ligand biological axis plays an important role in mediating type 1 cytokine-dependent cell-mediated immunity, which could be beneficial for attenuating RCC if optimized. We found that systemic IL-2 induced the expression of CXCR3 on circulating mononuclear cells but impaired the CXCR3 ligand chemotactic gradient from plasma to tumor by increasing circulating CXCR3 ligand levels in a murine model of RCC. Moreover, the antitumor effect of systemic IL-2 was CXCR3-dependent, as IL-2 failed to inhibit tumor growth and angiogenesis in CXCR3-/- mice. We hypothesized that the immunotherapeutic effect of the CXCR3/CXCR3 ligand biological axis could be optimized by first priming with systemic IL-2 to induce CXCR3 expression on circulating mononuclear cells followed by enhancing the intratumor CXCR3 ligand levels to establish optimal CXCR3-dependent chemotactic gradient. We found that combined systemic IL-2 with an intratumor CXCR3 ligand (CXCL9) lead to significantly greater reduction in tumor growth and angiogenesis, increased tumor necrosis, and increased intratumor infiltration of CXCR3+ mononuclear cells, as compared with either IL-2 or CXCL9 alone. The enhanced antitumor effect of the combined strategy was associated with a more optimized CXCR3-dependent chemotactic gradient and increased tumor-specific immune response. These data suggest that the combined strategy of systemic IL-2 with intratumor CXCR3 ligand is more efficacious than either strategy alone for reducing tumor-associated angiogenesis and augmenting tumor-associated immunity, the concept of immunoangiostasis.  相似文献   

18.
The human intestinal parasite Schistosoma mansoni causes a chronic disease, schistosomiasis or bilharzia. According to the current literature, the parasite induces vigorous immune responses that are controlled by Th2 helper cells at the expense of Th1 helper cells. The latter cell type is, however, indispensable for anti-viral immune responses. Remarkably, there is no reliable literature among 230 million patients worldwide describing defective anti-viral immune responses in the upper respiratory tract, for instance against influenza A virus or against respiratory syncitial virus (RSV). We therefore re-examined the immune response to a human isolate of S. mansoni and challenged mice in the chronic phase of schistosomiasis with influenza A virus, or with pneumonia virus of mice (PVM), a mouse virus to model RSV infections. We found that mice with chronic schistosomiasis had significant, systemic immune responses induced by Th1, Th2, and Th17 helper cells. High serum levels of TNF-α, IFN-γ, IL-5, IL-13, IL-2, IL-17, and GM-CSF were found after mating and oviposition. The lungs of diseased mice showed low-grade inflammation, with goblet cell hyperplasia and excessive mucus secretion, which was alleviated by treatment with an anti-TNF-α agent (Etanercept). Mice with chronic schistosomiasis were to a relative, but significant extent protected from a secondary viral respiratory challenge. The protection correlated with the onset of oviposition and TNF-α-mediated goblet cell hyperplasia and mucus secretion, suggesting that these mechanisms are involved in enhanced immune protection to respiratory viruses during chronic murine schistosomiasis. Indeed, also in a model of allergic airway inflammation mice were protected from a viral respiratory challenge with PVM.  相似文献   

19.
Exposure to certain viruses and parasites has been shown to prevent the induction of transplantation tolerance in mice via the generation of cross-reactive memory T cell responses or the induction of bystander activation. Bacterial infections are common in the perioperative period of solid organ allograft recipients in the clinic, and correlations between bacterial infections and acute allograft rejection have been reported. However, whether bacterial infections at the time of transplantation have any effect on the generation of transplantation tolerance remains to be established. We used the Gram-positive intracellular bacterium Listeria monocytogenes (LM) as a model pathogen because its effects on immune responses are well described. Perioperative LM infection prevented cardiac and skin allograft acceptance induced by anti-CD154 and donor-specific transfusion in mice. LM-mediated rejection was not due to the generation of cross-reactive T cells and was largely independent of signaling via MyD88, an adaptor for most TLRs, IL-1, and IL-18. Instead, transplant rejection following LM infection was dependent on the expression of the phagosome-lysing pore former listeriolysin O and on type I IFN receptor signaling. Our results indicate that bacterial exposure at the time of transplantation can antagonize tolerogenic regimens by enhancing alloantigen-specific immune responses independently of the generation of cross-reactive memory T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号