首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of ANS to apolactate dehydrogenase (apo-LDH) is accompanied by a 300-fold increase in dye fluorescence with a shift of the emission maximum from 515 to 479 nm, as well as by quenching of intrinsic protein fluorescence. A tetrameric LDH molecule has 6.4 +/- 1.6 non-interacting dye-binding sites with an association constant equal to (4.3 +/- 1.6) X 10(3) M-1. NAD+ added at saturating concentrations does not alter the number of ANS binding sites or the association constant value. The formation of binary LDH.NAD+, LDH.NADH, LDH.AMP and LDH.pyruvate complexes causes the quenching of fluorescence of the enzyme-bound ANS. The extent of quenching observed at ligand saturating concentrations differs for each ligand. Pyruvate added to the binary LDH.AMP complex exerts no effect on the fluorescence of protein-bound ANS; this indicates that the binding of AMP causes some alterations in the microenvironment of the substrate-binding site. Nicotinamide mononucleotide (NMN) can act as a coenzyme in the LDH-catalyzed reaction. AMP added together with NMN displays an inhibitory effect. The cationic (auramine O) and anionic (ANS) fluorescent probes bound to LDH exhibit different responses to conformational changes accompanying the transition from the apoenzyme to the LDH X NAD-pyruvate complex.  相似文献   

2.
We have used actin labelled in Cys-374 with N-(1-pyrenyl)iodoacetamide to monitor the dynamics and equilibria of the interaction between myosin subfragment 1 and the actin-troponin-tropomyosin complex in the presence of calcium. These results are compared with those obtained for pure actin and myosin subfragment 1. The sensitivity of this fluorescent label allowed us to measure the binding affinity of myosin subfragment 1 for actin directly by fluorescence titration. The affinity of subfragment 1 for actin is increased sixfold by troponin-tropomyosin in the presence of calcium. Kinetic studies of the interaction of subfragment 1 and actin have revealed an isomerization of the actin-subfragment 1 complex from a state in which actin is weakly bound (Ka = 5.9 X 10(4) M-1) to a more tightly bound complex (Ka = 1.7 X 10(7) M-1) (Coates, Criddle & Geeves (1985) Biochem. J. 232, 351). Results in the presence of troponin-tropomyosin show the same isomerization. The sixfold increase in affinity of subfragment 1 for actin is shown to be due to a decrease in the rate of dissociation of actin from the weakly bound complex.  相似文献   

3.
Human serum albumin (HSA), under conditions of low pH, is known to exist in two isomeric forms, the F form at around pH 4.0 and the E form below 3.0. We studied its conformation in the acid-denatured E form using far-UV and near-UV CD, binding of a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal transition by far-UV and near-UV CD, tryptophan fluorescence, quenching of tryptophan fluorescence using a neutral quencher, acrylamide and viscosity measurements. The results show that HSA at pH 2.0 is characterized by a significant amount of secondary structure, as evident from far-UV CD spectra. The near-UV CD spectra showed a profound loss of tertiary structure. A marked increase in ANS fluorescence signified extensive solvent exposure of non-polar clusters. The temperature-dependence of both near-UV and far-UV CD signals did not exhibit a co-operative thermal transition. The intrinsic fluorescence and acrylamide quenching of the lone tryptophan residue, Trp214, showed that, in the acid-denatured state, it is buried in the interior in a non-polar environment. Intrinsic viscosity measurements showed that the acid-denatured state is relatively compact compared with that of the denatured state in 7 M guanidine hydrochloride. These results suggest that HSA at pH 2.0 represents the molten globule state, which has been shown previously for a number of proteins under mild denaturing conditions.  相似文献   

4.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

5.
Human monoclonal, aglycosyl-IgG produced in vitro in the presence of tunicamycin, was compared with its native and acid pH-altered counterparts for their respective abilities to bind the fluorescent hydrophobicity probe, 8-anilinonaphthalene sulfonate. A novel technique based on continuous-flow dynamic dialysis (Sparrow et al., 1982, Anal. Biochem. 123:255-264) allowed binding studies under non-equilibrium conditions. While the native IgG conformation exhibits two, weak ANS binding sites (ca. 10(3) l/mol), aglycosyl-IgG has one weak and one moderate affinity (least squares average Ka = 2 X 10(4) l/mol) site, and the acid conformer binds yet another two ANS molecules with moderate affinity (4 X 10(4) l/mol). Increases in affinity and in the number of sites correlate roughly with increased relative percent fluorescence by conventional fluorimetry. The fluorescence lifetime of ANS bound to altered IgGs is about 10% longer (T2 = 15 nsec by time-resolved fluorimetry) than that for native IgG. All populations also exhibit a rapid decay component (T1 = 3 nsec) analogous to that seen for ANS in 50% aqueous dioxane. Results are discussed in relation to structural role(s) for IgG-linked heterosaccharides.  相似文献   

6.
Additon of pyocin R1, a bacteriocin of Pseudomonas aeruginosa, to sensitive cells caused a fluorescence increase of 8-anilino-1-naphthalenesulfonate (ANS) in the cell suspension. The reaction was rapid, starting with a short time lag after adsorption of pyocin onto the cells and finishing within several minutes. The fluorescence response was attributed to the interaction of the cell body and ANS, not to that of the medium outside the cells and ANS. The maximal amplitude of fluorescence after pyocin addition was dependent on temperature, and the relation appeared to be biphasic. Similarly, Arrhenius plots of the initial rate of fluorescence change were biphasic. The transition of slopes in both cases occurred in the temperature range between 18 and 19 degrees. These results suggest that ANS interacts with lipids in the cell envelope and that pyocin causes a structural change of the cell envelope leading to increased fluorescence of ANS.  相似文献   

7.
The fluorescent probe, 8-anilino-1-napthalenesulfonate (ANS) binds to Escherichia coli, showing an enhanced fluorescence. The interaction of colicin E1 with sensitive cells causes an increase of about 100% in the fluorescence of the bound ANS, and this change at equilibrium has an apparent "all-or-none" nature as a function of E1 multiplicity. Approximately 6 to 8% of the ANS is bound to the cells at equilibrium. The colicin E1-induced fluorescence increase can be attributed partly to an increase in ANS binding and partly to an increase in the fluorescence yield of the bound ANS. The kinetics of the E1-induced fluorescence increase in sensitive cells are very similar to those of the adenosine triphosphate decrease. The phosphorylation uncoupler p-trifluoromethoxy-carbonylcyanidephenylhydrazone also causes a large change in the fluorescence of bound ANS. Colicin E2 or E3 does not cause any fluorescence change, nor does colicin E1 cause fluorescence change with a colicinogenic strain. ANS appears to be a probe of structural or conformational change in the cell envelope that is closely associated with the colicin E1-induced adenosine triphosphate decrease.  相似文献   

8.
To investigate the relationship between thin filament Ca2+ binding and activation of the MgATPase rate of myosin subfragment 1, native cardiac thin filaments were isolated and characterized. Direct measurements of 45Ca binding to the thin filament were consistent with non-cooperative binding to two high affinity sites (Ka 7.3 +/- 0.8 x 10(6) M-1) and either cooperative or non-cooperative binding to one low affinity site (Ka 4 +/- 2 x 10(5) M-1) per troponin at 25 degrees C, 30 mM ionic strength, pH 7.06. Addition of a low concentration of myosin subfragment 1 to the native thin filaments produced a Ca2+-regulated MgATPase activity with Kapp (2.5 +/- 1.3 x 10(5) M-1), matching the low affinity Ca2+ site. The MgATPase rate was cooperatively activated by Ca2+ (Hill coefficient 1.8). To determine whether Ca2+ binding to the low affinity sites was cooperative, native thin filament troponin was exchanged with troponin labeled on troponin C with 2-(4'-iodoacetamidanilo)naphthalene-6-sulfonic acid. From the Ca2+-sensitive fluorescence of this complex, Ca2+ binding was cooperative with a Hill coefficient of 1.7-2.0. Using the troponin-exchanged thin filaments, myosin subfragment 1 MgATPase rate activation was also cooperative and closely proportional to Ca2+ thin filament binding. Reconstitution of the thin filament from its components raised the Ca2+ affinity by a factor of 2 (compared with native thin filaments) and incorporation of fluorescently modified troponin raised the Ca2+ affinity by another factor of 2. Stoichiometrically reconstituted thin filaments produced non-cooperative MgATPase rate activation, contrasting with cooperative activation with native thin filaments, troponin-exchanged thin filaments and thin filaments reconstituted with a stoichiometric excess of troponin. The Ca2+-induced fluorescence transition of stoichiometrically reconstituted thin filaments was non-cooperative. These results suggest that Ca2+ binds cooperatively to the regulatory sites of the cardiac thin filament, even in the absence of myosin, and even though cardiac troponin C has only one Ca2+-specific binding site. A theoretical model for these observations is described and related to the experimental data. Well-known interactions between neighboring troponin-tropomyosin complexes are the proposed source of cooperativity and also influence the overall Ka. The data indicate that Ca2+ is four times more likely to elongate a sequence of troponin-tropomyosin units already binding Ca2+ than to bind to a site interior to a sequence of units without Ca2+.  相似文献   

9.
The addition of ATP to turkey gizzard myosin causes an enhancement of the intrinsic tryptophan fluorescence. The level of fluorescence enhancement is determined by the myosin conformation. The transition of myosin from the folded (10 S) state to the extended (6 S) state is accompanied by a decrease in the fluorescence level. Phosphorylation-dephosphorylation of myosin does not directly influence fluorescence and will induce changes only if the myosin conformation is altered. Under the appropriate conditions, phosphorylation of myosin favors the transition of 10 S to 6 S. The phosphorylation dependence of the associated fluorescence decrease is not linear, and it is proposed that the phosphorylation of both light chains is required for the full transition. The tryptophan residues involved respond to the binding of ATP at the hydrolytic sites. Since the fluorescence properties of gizzard myosin are influenced by the myosin conformation, it is reasonable to assume that the active sites are also modified by the shape of the myosin molecule.  相似文献   

10.
High-risk papillomaviruses are known to exert their transforming activity mainly through E7, one of their two oncoproteins. Despite its relevance, no structural information has been obtained that could explain the apparent broad binding specificity of E7. Recombinant E7 from HPV-16 purified to near homogeneity showed two species in gel filtration chromatography, one of these corresponding to a dimer with a molecular weight of 22 kDa, determined by multiangle light scattering. The E7 dimer was isolated for characterization and was shown to undergo a substantial conformational transition when changing from pH 7.0 to 5.0, with an increase in helical structure and increased solvent accessibility to hydrophobic surfaces. The protein was resistant to thermal denaturation even in the presence of SDS, and we show that persistent residual structure in the monomer is responsible for its reported anomalous electrophoretic behavior. The dimer also displays a nonglobular hydrodynamic volume based on gel filtration experiments and becomes more globular in the presence of 0.3 M guanidinium chloride, with hydrophobic surfaces becoming accessible to the solvent, as indicated by the large increase in ANS binding. At low protein concentration, dissociation of the globular E7 dimer was observed, preceding the cooperative unfolding of the structured and extended monomer. Although E7 bears properties that resemble natively unfolded polypeptides, its far-UV circular dichroism spectrum, cooperative unfolding, and exposure of ANS binding sites support a folded and extended, as opposed to disordered and fluctuating, conformation. The large increase in solvent accessibility to hydrophobic surfaces upon small pH decrease within physiological range and in mild denaturant concentrations suggests conformational properties that could have evolved to enable protein-protein recognition of the large number of cellular binding partners reported.  相似文献   

11.
Isolated, nucleotide-depleted bovine-heart F1-ATPase exhibits a break in Arrhenius plot with a 2.7-fold increase in activation energy of ATP hydrolysis below 18-19 degrees C. Analysis of intrinsic tyrosine fluorescence and of the circular dichroism of F1-ATPase showed an abrupt and reversible conformational change occurring at the break temperature, characteristic of a structural tightening at low temperature. Analysis of catalytic nucleotide binding sites using fluorescent ADP analog, 3'-O-(1-naphthoyl)adenosine diphosphate did not show any significant change in affinity of nucleotide binding around the transition temperature but the bound fluorophore exerted a more restricted motion and slower rotation at temperature below the break, indicating a change in the mobility of groups in the close neighbourhood. It is concluded that, as a result of temperature, two kinetically distinct states of F1-ATPase are induced, due to a change in enzyme conformation, which influences directly the properties of catalytic nucleotide binding sites.  相似文献   

12.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

13.
1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity.  相似文献   

14.
Calcium binding to troponin C and troponin was examined by a metallochromic indicator method under various conditions to obtain a further understanding of the regulatory roles of these proteins in muscle contraction. Troponin C has four Ca binding sites, of which 2 sites have a high affinity of 4.5 X 10(6) M-1 for Ca2+ and the other 2 sites have a low affinity of 6.4 X 10(4) M-1 in a reaction medium consisting of 100 mM KCl, 20 mM MOPS-KOH pH 6.80 and 0.13 mM tetramethylmurexide at 20 degrees C. Magnesium also binds competitively to both the high and low affinity sites: the apparent binding constants are 1,000 M-1 and 520 M-1, respectively. Contrary to the claim by Potter and Gergely (J. Biol. Chem. 250, 4628-4633, 1975), the low affinity sites are not specific only for Ca2+. The high and low affinity sites of troponin C showed different dependence on the ionic strength: the high affinity sites were similar to GEDTA, while the low affinity sites were similar to calmodulin, which has a steeper ionic strength dependence than GEDTA. Ca binding to troponin C was not affected by change of pH between 6.5 and 7.2. Troponin I enhanced the apparent affinity of troponin C for Ca2+ to a value similar to that for troponin. Trifluoperazine also increased Ca binding to troponin C. Troponin has four Ca binding sites as does troponin C, but the affinities are so high that the precise analysis was difficult by this method. The apparent binding constants for Ca2+ and Mg2+ were determined to be 3.5 X 10(6) M-1 and 440 M-1, respectively, for low affinity sites under the same conditions as for troponin C, being independent of change in pH between 6.5 and 7.2. The competitive binding of Mg2+ to the low affinity sites of troponin is consistent with the results of Kohama (J. Biochem. 88, 591-599, 1980). The estimate for the high affinity sites is compatible with the reported results.  相似文献   

15.
8-anilino-1-naphthalenesulfonic acid (ANS) is believed to strongly bind cationic groups of proteins and polyamino acids through ion pair formation. A paucity of data exists on the fluorescent properties of ANS in these interactions. ANS binding to arginine and lysine derivatives was studied by fluorescence and circular dichroism spectroscopies to augment published information attained by isothermal titration calorimetry (ITC). Fluorescence enhancement with a hypsochromic shift results from the interaction of the charged group of lysine and arginine with the sulfonate group of ANS. Ion pairing between Arg (or Lys) and the sulfonate group of ANS reduce the intermolecular charge transfer (CT) rate constant that leads to enhancement of fluorescence. A positive charge near the -NH group of ANS changes the intramolecular CT process producing a blue shift of fluorescence. The Arg side chain compared to that of Lys more effectively interacts with both the -NH and sulfonate groups of ANS. ANS binding also induces a random coil-alpha helix transition in poly-Arg. Our data, in contrast to ITC results, indicate that electrostatic interactions between ANS derivatives and positively charged side chains do not account for binding affinity in the micromolar range. In addition to ion pairing complementary interactions, such as van der Waals, should be considered for high affinity (K(d)<1 mM) external binding sites of proteins.  相似文献   

16.
The pressure-induced denaturation of rabbit skeletal myosin and its subfragments under hydrostatic pressure were investigated. Four nanometer of red shift of the intrinsic fluorescence spectrum was observed in myosin under a pressure of 400 MPa. The ANS fluorescence of myosin increased with elevating pressure. Changes in the intrinsic fluorescence spectra of myosin and its subfragments were quantified and expressed as the center of spectral mass. The center of spectral mass of myosin and its subfragments linearly decreased with elevating pressure, and increased with lowering pressure. The fluorescence intensity of the ANS-labeled rod did not change during pressure treatment. The present results indicate that the most pressure-sensitive portion of myosin molecule is the head. Hysteresis of the center of spectral mass of S1 appeared under pressures above 300 MPa. Changes in the center of spectral mass of S1 above 350 MPa showed stronger hysteresis. The center of spectral mass did not decrease above 350 MPa during the compression process, indicating that S1 was stable in a partially denatured state at 350 MPa under pressure. The changes in the relative intensities of ANS fluorescence of S1 were measured under pressures up to 400 MPa, and the ANS fluorescence intensity increased with elevating pressure but it did not change after pressure release. The ANS fluorescence intensity increased under constant pressure suggesting that the pressure-induced denaturation of myosin was accelerated during pressurization.  相似文献   

17.
Using fluorescence parameters of tryptophanyl and bound ANS, the acid-induced structural transitions of defatted monomeric human serum albumin were measured as pH-dependences from 6 to 2.5 in the wide range of temperature (10 to 45 degrees C) and ionic strength (from 0.001 to 0.2 M NaCl or 0.067 M Na2SO4). Temperature rise and decrease in ionic strength value result in the splitting of the N-F-transition onto two stages, N-F1 and F1-F2. The N-F1-transition is accompanied by the blue shift of tryptophanyl and ANS fluorescence spectra and increase in the ANS emission yield. The F1-F2-stage is manifested in an additional blue spectral shift and a sharp drop of the ANS emission yield, which is shown to be due to the lowering of albumin affinity for the dye. In the acidic-extension stage (F2-E), the spectra undergo a red shift which means that the nanosecond dipole relaxation of protein groups and bound water becomes faster. In the F2 from, the albumin affinity for ANS is significantly lowered; the association constant of the primary binding site is lower by an order of quantity and two secondary sites are practically disappeared. The complex effect of temperature, ionic strength and pH changes on the properties of ANS-binding sites is considered as a model of possible control influences of these factors upon the albumin transport of amphiphilic anions in organism.  相似文献   

18.
The binding of estradiol-17 beta (E2), diethylstilbestrol (DES), and polyene fatty acids, in particular arachidonate (C20:4), to alpha 1-fetoprotein (alpha-FP) and albumin purified from mouse embryo sera was studied using equilibrium dialysis and electrophoretic techniques. E2, arachidonate, and DES all bind to alpha-FP, but with decreasing strength. E2 is a high affinity, low capacity ligand (Ka approximately 0.8 X 10(8) M-1 and approximately 0.3 sites/mol of alpha-FP at 25 degrees C); arachidonate is a weaker ligand disposing of more sites (Ka approximately 0.3 X 10(7) M-1 and 4-5 sites/mol of alpha-FP); the binding of DES is of comparatively low affinity and capacity (Ka approximately 0.2 X 10(7) M-1 and n approximately 0.7/mol of alpha-FP). In spite of different structures and equilibrium parameters, E2, DES, and arachidonate are able to compete with each other for binding to the fetoprotein. The C22:4 and C22:6 fatty acids are also efficient concentration-dependent inhibitors of E2 or DES binding. Albumin binds the fatty acids and DES, but equilibrium parameters are different from those of alpha-FP. In particular, arachidonate is a better ligand for albumin, where it interacts with at least two classes of apparent sites (Ka1 approximately 0.3 X 10(8) M-1 and n1 approximately 1; Ka2 approximately 0.2 X 10(7) M-1 and n2 approximately 30). In contrast to alpha-FP, albumin virtually does not bind E2. Also, no competition could be demonstrated between DES and fatty acid ligands for binding to albumin. None of the studied interactions, with either albumin or alpha-FP, was modified even by high doses of bilirubin. The possible functions of the various binding activities present in fetal sera in the process of growth are discussed.  相似文献   

19.
Spectrofluorometric studies on the conformational changes in tropomyosin associated with depolymerization of the molecules were carried out using 1-anilino-8-naphthalene sulfonate (ANS). When ANS-probed tropomyosin was depolymerized to its monomer, the fluorescence intensity markedly increased, with a decrease in fluorescence polarization. On the other hand, the emission maxima of the ANS-tropomyosin complexes of both forms were the same. The temperature dependence of the polarization of the complexes at various KCl concentrations suggested that the segmental motion of a moiety containing the fluorophore was considerably activated by depolymerization of tropomyosin. In the polymerized and oligomeric forms, a thermal transition in the polarization was observed with a transition temperature of 30 degrees C. Titration curves of tropomyosin with ANS showed simple saturation kinetics with both monomer and polymer, and the apparent dissociation constants were estimated to be 9.93 X 10(-5) M (monomer) and 7.43 X 10(-5) M (polymer). On the other hand, the number of the ANS-binding sites increased from 0.5 to 2.0 per tropomyosin monomer on depolymerization of the molecules. Based on these results, the conformational state of tropomyosin in the polymerized form is discussed.  相似文献   

20.
Phosphorylation of bovine platelet myosin by protein kinase C   总被引:8,自引:0,他引:8  
M Ikebe  S Reardon 《Biochemistry》1990,29(11):2713-2720
Bovine platelet myosin is phosphorylated by protein kinase C at multiple sites. Most of the phosphate is incorporated in the 20,000-dalton light chain although some phosphate is incorporated in the heavy chain. Phosphorylation of the 20,000-dalton light chain of platelet myosin is 10 times faster than the phosphorylation of smooth muscle myosin. Platelet myosin light chain is first phosphorylated at a threonine residue followed by a serine residue. Dominant phosphorylation sites of the 20,000-dalton light chain are estimated as serine-1, serine-2, and threonine-9. Prolonged phosphorylation by protein kinase C resulted in an additional phosphorylation site which, on the basis of limited proteolysis, appears to be either serine-19 or threonine-18. Phosphorylation by protein kinase C causes an inhibition of actin-activated ATPase activity of platelet myosin prephosphorylated by myosin light chain kinase. Inhibition of ATPase activity is due to a decreased affinity of myosin for actin, and no change in Vmax is observed. It is shown that platelet myosin also exhibits the 6S to 10S conformation transition as judged by viscosity and gel filtration methods. Mg2(+)-ATPase activity of platelet myosin is paralleled with the 10S-6S transition. Phosphorylation by protein kinase C affects neither the 10S-6S transition nor the myosin filament formation. Therefore, the inhibition of actin-activated ATPase activity of platelet myosin is not due to the change in the myosin conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号