首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The synthesis of thioglycosyl donors with a disaccharide beta-D-Gal-(1-->3)-D-GalNAc backbone was studied using the glycosylation of a series of suitably protected 3-monohydroxy- and 3,4-dihydroxyderivatives of phenyl 2-azido-2-deoxy-1-thio-alpha- and 1-thio-beta-D-galactopyranosides by galactosyl bromide, fluoride, and trichloroacetimidate. In the reaction with the monohydroxylated glycosyl acceptor, the process of intermolecular transfer of thiophenyl group from the glycosyl acceptor onto the cation formed from the molecule of glycosyl donor dominated. When glycosylating 3,4-diol under the same conditions, the product of the thiophenyl group transfer dominated or the undesired (1-->4), rather than (1-->3)-linked, disaccharide product formed. The aglycone transfer was excluded when 4-nitrophenylthio group was substituted for phenylthio group in the galactosyl acceptor molecule. This led to the target disaccharide, 4-nitrophenyl 2-azido-4,5-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-beta-D-galactopyranoside, in 57% yield. This disaccharide product bears nonparticipating azide group in position 2 of galactosamine and can hence be used to form alpha-glycoside bond. 2-Azide group and the aglycone nitro group were simultaneously reduced in this product and then trichloroacetylated, which led to the beta-glycosyl donor, 4-trichloroacetamidophenyl 4,6-O-diacetyl-2-deoxy-3-O-(2,3,4,6-tetra- O-acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside, in 62% yield. The resulting glycosyl donor was used in the synthesis of tetrasaccharide asialo-GM1.  相似文献   

2.
Glycoside phosphorylases (GPs) are interesting enzymes for the glycosylation of chemical molecules. They require only a glycosyl phosphate as sugar donor and an acceptor molecule with a free hydroxyl group. Their narrow substrate specificity, however, limits the application of GPs for general glycoside synthesis. Although an enzyme’s substrate specificity can be altered and broadened by protein engineering and directed evolution, this requires a suitable screening assay. Such a screening assay has not yet been described for GPs. Here we report a screening procedure for GPs based on the measurement of released inorganic phosphate in the direction of glycoside synthesis. It appeared necessary to inhibit endogenous phosphatase activity in crude Escherichia coli cell extracts with molybdate, and inorganic phosphate was measured with a modified phosphomolybdate method. The screening system is general and can be used to screen GP enzyme libraries for novel donor and acceptor specificities. It was successfully applied to screen a residue E649 saturation mutagenesis library of Cellulomonas uda cellobiose phosphorylase (CP) for novel acceptor specificity. An E649C enzyme variant was found with novel acceptor specificity toward alkyl β-glucosides and phenyl β-glucoside. This is the first report of a CP enzyme variant with modified acceptor specificity.  相似文献   

3.
BackgroundCurrently marketed chondroitin sulfate isolated from animal sources and structurally quite heterogeneous. Synthesis of structurally defined chondroitin sulfate is highly desired. The capsular polysaccharide from Escherichia coli strain K4 is similar to chondroitin, and its biosynthesis requires a chondroitin polymerase (KfoC). The essential step toward de novo enzymatic synthesis of chondroitin sulfate, synthesis of chondroitin, could be achieved by employing this enzyme.MethodsStructurally defined acceptors and donor-sugars were prepared by chemoenzymatic approaches. In addition, surface plasmon resonance was employed to determine the binding affinities of individual substrates and donor–acceptor pairs for KfoC.ResultsKfoC has broad donor substrate specificity and acceptor promiscuity, making it an attractive tool enzyme for use in structurally-defined chimeric glycosaminoglycan oligosaccharide synthesis in vitro. In addition, the binding of donor substrate molecules regulated the affinity of KfoC for acceptors, then influenced the glycosyl transferase reaction catalyzed by this chondroitin polymerase.Conclusion and general significanceThese results assist in the development of enzymatic synthesis approaches toward chimeric glycosaminoglycan oligosaccharides and designing future strategies for directed evolution of KfoC in order to create mutants toward user-defined goals.  相似文献   

4.
The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D-Glu-meso-A2pm-D-Ala-D-Ala units (lipid II) into linear peptidoglycan chains. These units are linked, at C1 of N-acetylmuramic acid (MurNAc), to a C55 undecaprenyl pyrophosphate. In an in vitro assay, lipid II functions both as a glycosyl donor and as a glycosyl acceptor substrate. Using substrate analogues, it is suggested that the specificity of the enzyme for the glycosyl donor substrate differs from that for the acceptor. The donor substrate requires the presence of both N-acetylglucosamine (GlcNAc) and MurNAc and a reactive group on C1 of the MurNAc and does not absolutely require the lipid chain which can be replaced by uridine. The enzyme appears to prefer an acceptor substrate containing a polyprenyl pyrophosphate on C1 of the MurNAc sugar. The problem of glycan chain elongation that presumably proceeds by the repetitive addition of disaccharide peptide units at their reducing end is discussed.  相似文献   

5.
This study establishes that guinea pig liver cytosolic beta-glucosidase generates a common glucosyl-enzyme intermediate from a variety of aryl beta-D-glucoside substrates and that the intermediate can react with various acceptors to form distinct products at rates which are dependent on the structure, nucleophilicity, and concentration of the acceptor. Specifically, we demonstrate that water and linear alkanols will react with the glucosyl-enzyme intermediate to form D-glucose and alkyl-beta-D-glucoside (e.g. octyl-beta-D-glucoside), respectively. The rate of alcoholysis is 24-fold greater than the rate of hydrolysis of the glucosyl-enzyme intermediate and accounts for the increase in steady-state rate of substrate disappearance in the presence of alcohols. In addition, the substrate molecule itself (e.g. p-nitrophenyl-beta-D-galactoside (pNP-Gal)) can serve as an acceptor in the transglycosylation reaction, thereby enabling the enzyme to synthesize disaccharide glycosides (e.g. pNP-beta-Gal(6----1)beta-Gal). The transglycosylation data point to the presence of two hydrophobic subsites in the active site of the cytosolic beta-glucosidase. These data support a model in which the cytosolic beta-glucosidase binds an acceptor and a glycosyl donor simultaneously within its catalytic center and efficiently catalyzes the transfer of a sugar residue from the donor to the acceptor.  相似文献   

6.
The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature’s own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis.  相似文献   

7.
A microbioreactor immobilized with a synthase-type mutant enzyme, Endo-M-N175Q (glycosynthase) of endo-β-N-acetylglucosaminidase derived from Mucor hiemalis (Endo-M), was constructed and used for glycoconjugate synthesis. The transglycosylation was performed with a reaction mixture containing an oxazoline derivative of sialo complex-type glycoside (SG), which was prepared from a sialo complex-type glycopeptide SGP derived from hen egg yolk, as a glycosyl donor and N-Fmoc-N-acetylglucosaminyl-l-asparagine [Fmoc-Asn(GlcNAc)-OH] as an acceptor. The reaction mixture was injected into a glycosynthase microbioreactor at a constant flow rate. Highly efficient and nearly stoichiometric transglycosylation occurred in the microbioreactor, and the transglycosylation product was eluted from the other end of the reactor. The glycosynthase microbioreactor was stable and could be used repeatedly for a long time.  相似文献   

8.
Faijes M  Pérez X  Pérez O  Planas A 《Biochemistry》2003,42(45):13304-13318
Glycosynthases are engineered retaining glycosidases devoid of hydrolase activity that efficiently catalyze transglycosylation reactions. The mechanism of the glycosynthase reaction is probed with the E134A mutant of Bacillus licheniformis 1,3-1,4-beta-glucanase. This endo-glycosynthase is regiospecific for formation of a beta-1,4-glycosidic bond with alpha-glycosyl fluoride donors (laminaribiosyl as the minimal donor) and oligosaccharide acceptors containing glucose or xylose on the nonreducing end (aryl monosaccharides or oligosaccharides). The pH dependence of the glycosynthase activity reflects general base catalysis with a kinetic pK(a) of 5.2 +/- 0.1. Kinetics of enzyme inactivation by a water-soluble carbodiimide (EDC) are consistent with modification of an active site carboxylate group with a pK(a) of 5.3 +/- 0.2. The general base is Glu138 (the residue acting as the general acid-base in the parental wild-type enzyme) as probed by preparing the double mutant E134A/E138A. It is devoid of glycosynthase activity, but use of sodium azide as an acceptor not requiring general base catalysis yielded a beta-glycosyl azide product. The pK(a) of Glu138 (kinetic pK(a) on k(cat)/K(M) and pK(a) of EDC inactivation) for the E134A glycosynthase has dropped 1.8 pH units compared to the pK(a) values of the wild type, enabling the same residue to act as a general base in the glycosynthase enzyme. Kinetic parameters of the E134A glycosynthase-catalyzed condensation between Glcbeta4Glcbeta3GlcalphaF (2) as a donor and Glcbeta4Glcbeta-pNP (15) as an acceptor are as follows: k(cat) = 1.7 s(-)(1), K(M)(acceptor) = 11 mM, and K(M)(donor) < 0.3 mM. Donor self-condensation and elongation reactions are kinetically evaluated to establish the conditions for preparative use of the glycosynthase reaction in oligosaccharide synthesis. Yields are 70-90% with aryl monosaccharide and cellobioside acceptors, but 25-55% with laminaribiosides, the lower yields (and lower initial rates) due to competitive inhibition of the beta-1,3-linked disaccharide acceptor for the donor subsites of the enzyme.  相似文献   

9.
Glycodiversification of natural products is an effective strategy for small molecule drug development. Recently, improved methods for chemo-enzymatic synthesis of glycosyl donors has spurred the characterization of natural product glycosyltransferases (GTs), revealing that the substrate specificity of many naturally occurring GTs as too stringent for use in glycodiversification. Protein engineering of natural product GTs has emerged as an attractive approach to overcome this limitation. This review highlights recent progress in the engineering/evolution of enzymes relevant to natural product glycodiversification with a particular focus upon GTs.  相似文献   

10.
The use of acetylated phenyl 1-seleno-beta-D-galactofuranoside as a glycosyl donor for the synthesis of protected D-Galf-beta-(1-->3)-alpha-D-Manp as its methyl or ethylthio glycoside has been demonstrated. Activation of the selenoglycoside over a thioglycoside acceptor by NIS/TfOH is extremely selective and gives the ethylthio disaccharide in 91% yield. The parent disaccharide is found as a terminal and branched unit in the lipopeptidophosphoglycan oligosaccharides of the protozoan Trypanosoma cruzi, the causative agent of Chagas' disease.  相似文献   

11.
In recent years, sugars with a unique chemical handle have been used to detect and elucidate the function of glycoconjugates. Such chemical handles have generally been part of an N-acetyl moiety of a sugar. We have previously developed several applications using the single mutant Y289L-β1,4-galactosyltransferase I (Y289L-β4Gal-T1) and the wild-type polypeptide-α-GalNAc-T enzymes with UDP-C2-keto-Gal. Here, we describe for the first time that the GlcNAc-transferring enzymes-R228K-Y289L-β4Gal-T1 mutant enzyme, the wild-type human β1,3-N-acetylglucosaminyltransferase-2 and human Maniac Fringe-can also transfer the GlcNAc analog C2-keto-Glc molecule from UDP-C2-keto-Glc to their respective acceptor substrates. Although the R228K-Y289L-β4Gal-T1 mutant enzyme transfers the donor sugar substrate GlcNAc or its analog C2-keto-Glc only to its natural acceptor substrate, GlcNAc, it does not transfer to its analog C2-keto-Glc. Thus, these observations suggest that the GlcNAc-transferring glycosyltransferases can generally accommodate a chemical handle in the N-acetyl-binding cavity of the donor sugar substrate, but not in the N-acetyl-binding cavity of the acceptor sugar.  相似文献   

12.
Disaccharide phosphorylases are increasingly applied for glycoside synthesis, since they are very regiospecific and use cheap and easy to obtain donor substrates. A promising enzyme is cellobiose phosphorylase (CP), which was discovered more than 50 years ago. Many other bacterial CP enzymes have since then been characterized, cloned and applied for glycoside synthesis. However, the general application of wild-type CP for glycoside synthesis is hampered by its relatively narrow substrate specificity. Recently we have taken some successful efforts to broaden the substrate specificity of Cellulomonas uda CP by directed evolution and protein engineering. This review will give an overview of the obtained results and address the applicability of the engineered CP enzymes for glycoside synthesis. CP is the first example of an extensively engineered disaccharide phosphorylase, and may provide valuable information for protein engineering of other phosphorylase enzymes.  相似文献   

13.
Disaccharide phosphorylases are glycosyltransferases (EC 2.4.1.α) of specialized carbohydrate metabolism in microorganisms. They catalyze glycosyl transfer to phosphate using a disaccharide as donor substrate. Phosphorylases for the conversion of naturally abundant disaccharides including sucrose, maltose, α,α-trehalose, cellobiose, chitobiose, and laminaribiose have been described. Structurally, these disaccharide phosphorylases are often closely related to glycoside hydrolases and transglycosidases. Mechanistically, they are categorized according the stereochemical course of the reaction catalyzed, whereby the anomeric configuration of the disaccharide donor substrate may be retained or inverted in the sugar 1-phosphate product. Glycosyl transfer with inversion is thought to occur through a single displacement-like catalytic mechanism, exemplified by the reaction coordinate of cellobiose/chitobiose phosphorylase. Reaction via configurational retention takes place through the double displacement-like mechanism employed by sucrose phosphorylase. Retaining α,α-trehalose phosphorylase (from fungi) utilizes a different catalytic strategy, perhaps best described by a direct displacement mechanism, to achieve stereochemical control in an overall retentive transformation. Disaccharide phosphorylases have recently attracted renewed interest as catalysts for synthesis of glycosides to be applied as food additives and cosmetic ingredients. Relevant examples are lacto-N-biose and glucosylglycerol whose enzymatic production was achieved on multikilogram scale. Protein engineering of phosphorylases is currently pursued in different laboratories with the aim of broadening the donor and acceptor substrate specificities of naturally existing enzyme forms, to eventually generate a toolbox of new catalysts for glycoside synthesis.  相似文献   

14.
Disaccharide phosphorylases are increasingly applied for glycoside synthesis, since they are very regiospecific and use cheap and easy to obtain donor substrates. A promising enzyme is cellobiose phosphorylase (CP), which was discovered more than 50 years ago. Many other bacterial CP enzymes have since then been characterized, cloned and applied for glycoside synthesis. However, the general application of wild-type CP for glycoside synthesis is hampered by its relatively narrow substrate specificity. Recently we have taken some successful efforts to broaden the substrate specificity of Cellulomonas uda CP by directed evolution and protein engineering. This review will give an overview of the obtained results and address the applicability of the engineered CP enzymes for glycoside synthesis. CP is the first example of an extensively engineered disaccharide phosphorylase, and may provide valuable information for protein engineering of other phosphorylase enzymes.  相似文献   

15.
A substantial body of work has been devoted to the design and synthesis of glycosyltransferase inhibitors. A major obstacle has always been the demanding chemistry. Therefore, only few potent and selective inhibitors are known to date. Glycosyltransferases possess two distinct binding sites, one for the donor substrate, and one for the acceptor substrate. In many cases binding to the donor site is well defined but data for acceptor binding is sparse. In particular, acceptor binding sites are often shallow, and in many cases the dimensions of the binding pocket are not well defined. One approach to glycosyltransferase inhibitors is to chemically link donor site and acceptor site ligands to generate high affinity binders. Here, we describe a novel approach to identify acceptor site ligands from a fragment library. We have chosen human blood group B galactosyltransferase (GTB) as a biologically important model target. The approach utilizes a combination of STD NMR, spin-lock filtered NMR experiments and surface plasmon resonance measurements. Following this route we have identified molecular fragments from a fragment library that bind to the acceptor site of GTB with affinities of the order of a natural acceptor substrate. Unlike natural substrates these fragments allow for straightforward chemical modifications and, therefore will serve as scaffolds for potent GTB inhibitors. In general, the approach described is applicable to any glycosyltransferase and may assist in the development of novel glycosyltransferase inhibitors.  相似文献   

16.
Nuclear magnetic resonance (NMR) spectroscopy was used to investigate the transfer of sialic acid from a range of sialic acid donor compounds to acceptor molecules, catalyzed by Trypanosoma cruzi trans-sialidase (TcTS). We demonstrate here that NMR spectroscopy is a powerful tool to monitor the trans-sialidase enzyme reaction for a variety of donor and acceptor molecules. The hydrolysis or transfer reactions that are catalyzed by TcTS were also investigated using a range of N-acetylneuraminosyl-based donor substrates and asialo acceptor molecules. These studies showed that the synthetic N-acetylneuraminosyl donor 4-methylumbelliferyl alpha-d-N-acetylneuraminide (MUN) is hydrolyzed by the enzyme approximately 3-5 times faster than either the disaccharide Neu5Acalpha(2,3)Galbeta1Me or the trisaccharide Neu5Acalpha(2,3)Lacbeta1Me. In the transfer reaction, we show that Neu5Acalpha(2,3)Lacbeta1Me is the most favorable substrate for TcTS and is a better substrate than the naturally-occurring N-acetylneuraminosyl donor alpha1-acid glycoprotein. In the case of MUN as the donor molecule, the transfer of Neu5Ac to different acceptors is significantly slower than when other N-acetylneuraminosyl donors are used. We hypothesize that when MUN is bound by the enzyme, the orientation and steric bulk of the umbelliferyl aglycon moiety may restrict the access for the correct positioning of an acceptor molecule. AutoDock studies support our hypothesis and show that the umbelliferyl aglycon moiety undergoes a strong pi-stacking interaction with Trp-312. The binding properties of TcTS towards acceptor (lactose) and donor substrate (Neu5Ac) molecules have also been investigated using saturation transfer difference (STD) NMR experiments. These experiments, taken together with other published data, have clearly demonstrated that lactose in the absence of other coligands does not bind to the TcTS active site or other binding domains. However, in the presence of the sialic acid donor, lactose (an asialo acceptor) was observed by NMR spectroscopy to interact with the enzyme's active site. The association of the asialo acceptor with the active site is an absolute requirement for the transfer reaction to proceed.  相似文献   

17.
In recent years, disaccharide phosphorylases have attracted increasing attention as promising biocatalysts for the production of glycosylated compounds. These enzymes make use of a glycosyl phosphate as donor substrate, which is much cheaper than the nucleotide-activated donors required by glycosyl transferases. Unfortunately, the number of available donor specificities is rather limited, and typically only allow the transfer of either a glucosyl or a galactosyl residue. In addition, most phosphorylases have a strong preference for carbohydrate acceptors, and can thus only be used for the synthesis of saccharide chains. The engineering of their substrate specificity thus is of significant value to broaden the range of products that can be obtained. Furthermore, the stability of some phosphorylases will also need to be improved to allow their commercial exploitation in a variety of industrial processes. In this review, several strategies for the engineering of these parameters are discussed and illustrated with some recent successes.  相似文献   

18.
Endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M), a family 85 glycoside hydrolase, acts on the beta1,4 linkage of N,N'-diacetylchitobiose moiety in the N-linked glycans of glycoproteins and catalyzes not only the hydrolysis reaction but also the transglycosylation reaction that transfers the releasing sugar chain to an acceptor other than water to form a new glycosidic linkage. The transglycosylation activity of Endo-M holds a great promise for the chemo-enzymatic synthesis and glyco-engineering of glycoproteins, but the inherent hydrolytic activity for product hydrolysis and low transglycosylation have hampered its broad applications. This paper describes the site-directed mutagenesis on residues in the putative catalytic region of Endo-M to generate mutants with superior transglycosylation activity. Two interesting mutants were discovered. The Y217F mutant was found to possess much enhanced transglycosylation activity and yet much diminished hydrolytic activity in comparison with the wild-type Endo-M. Kinetic analyses revealed that the Km value of Y217F for an acceptor substrate 4-methylumbelliferyl-beta-D-N-acetylglucosaminide was only one-tenth of that of the wild-type, implicating a much higher affinity of Y217F for the acceptor substrate than the wild-type. The other mutant, N175A, acts like a glycosynthase. It was found that mutation at Asn175"knocked out" the hydrolytic activity, but the mutant was able to take the highly active sugar oxazolines (the transition state mimics) as donor substrates for transglycosylation. This is the first glycosynthase derived from endo-beta-N-acetylglucosaminidases that proceed via a substrate-assisted mechanism. Our findings provide further insights on the substrate-assisted mechanism of GH85. The usefulness of the novel glycosynthase was exemplified by the efficient synthesis of a human immunodeficiency virus, type 1 (HIV-1) glycopeptide with potent anti-HIV activity.  相似文献   

19.
Bovine galactosyl transferase was found to utilize UDPglucose as a substrate and elicit disaccharide biosynthesis with glucose and N-acetylglucosamine as acceptors. The relative rate of glycosyl transferase with N-acetylglucosamine as acceptor was 0.3%, the rate for N-acetyllactosamine biosynthesis. This activity was also evidenced indirectly from NMR water proton relaxation experiments, and from Mn(II) ESR experiments. In direct experiments with radioactive UDPglucose, paper chromatography showed a product which migrated with cellobiose when glucose was the acceptor and a new, glucose-containing product which resulted when GlcNAc was the acceptor.Despite this marginally expanded specificity of the donor site, spin-label experiments with a covalently bound UDPgalactose analog reaffirmed the restrictive nature of the donor site against this non-glycosyl-like analog.  相似文献   

20.
Zeng Y  Ning J  Kong F 《Carbohydrate research》2003,338(4):307-311
In (1-->3)-glucosylation the glycosyl bond originally present in either donor or acceptor is shown to control the stereoselectivity of the forthcoming bond, i.e., the newly formed glycosidic linkage has the opposite anomeric configuration of that of either the donor or acceptor. Therefore, with alpha-(1-->3)-linked disaccharides with nonreducing ends that have the 3-OH free as the acceptor and an acetylated glucosyl trichloroacetimidate as the donor, or with an alpha-(1-->3)-linked acetylated disaccharide trichloroacetimidate as the donor and a glucoside with 3-OH free as the acceptor, beta-linked trisaccharides were obtained. Meanwhile, with beta-(1-->3)-linked disaccharides that have nonreducing ends with the 3-OH free as the acceptor and an acetylated glucosyl trichloroacetimidate as the donor, or with a beta-(1-->3)-linked acetylated disaccharide trichloroacetimidate as the donor and a glucoside with the 3-OH free as the acceptor, alpha-linked trisaccharides were obtained in spite of the C-2 neighboring group participation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号