首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin, through its various forms of assembly, provides the basic framework for cell motility, cell shape and intracellular organization in all eukaryotic cells. Many other cellular processes, for example endocytosis and cytokinesis, are also associated with dynamic changes of the actin cytoskeleton. Important prerequisites for actin's functional diversity are its intrinsic ability to rapidly assemble and disassemble filaments and its spatially and temporally well-controlled supramolecular organization. A large number of proteins that interact with actin, collectively referred to as actin-binding proteins (ABPs), carefully orchestrate different scenarios. Since its isolation in 1994 [Machesky, L.M. et al. (1994) J. Cell Biol. 127, 107-115], the Arp2/3 complex containing the actin-related proteins Arp2 and Arp3 has evolved to be one of the main players in the assembly and maintenance of many actin-based structures in the cell (for review see [Borths, E.L. and Welch, M.D. (2002) Structure 10, 131-135; May, R.C. (2001) Cell Mol. Life Sci. 58, 1607-1626; Pollard, T.D. et al. (2000) Rev. Biophys. Biomol. Struct. 29, 545-576; Welch, M.D. (1999) Trends Cell Biol. 11, 423-427]). In particular, when it comes to the assembly of the intricate branched actin network at the leading edge of lamellipodia, the Arp2/3 complex seems to have received all the attention in recent years. In parallel, but not so much in the spotlight, several reports showed that actin on its own can assume different conformations [Bubb, M.R. et al. (2002) J. Biol. Chem. 277, 20999-21006; Schoenenberger, C.-A. et al. (1999) Microsc. Res. Tech. 47, 38-50; Steinmetz, M.O. et al. (1998) J. Mol. Biol. 278, 793-811; Steinmetz, M.O. et al. (1997) J. Cell Biol. 138, 559-574; Millonig, R., Salvo, H. and Aebi, U. (1988) J. Cell Biol. 106, 785-796] through which it drives its supramolecular patterning, and which ultimately generate its functional diversity.  相似文献   

2.
Caveolins are scaffolding proteins able to collect on caveolae a large number of signalling proteins bearing a caveolin-binding motif. The proteins of the striatin family, striatin, SG2NA, and zinedin, are composed of several conserved, collinearly aligned, protein-protein association domains, among which a putative caveolin-binding domain [Castets et al. (2000) J. Biol. Chem. 275, 19970-19977]. They are associated in part with membranes. These proteins are mainly expressed within neurons and thought to act both as scaffolds and as Ca(2+)-dependent signalling proteins [Bartoli et al. (1999) J. Neurobiol. 40, 234-243]. Here, we show that (1) rat brain striatin, SG2NA and zinedin co-immunoprecipitate with caveolin-1; (2) all are pulled down by glutathione-S-transferase (GST)-caveolin-1; (3) a fragment of recombinant striatin containing the putative caveolin-binding domain binds GST-caveolin-1. Hence, it is likely that the proteins of the striatin family are addressed to membrane microdomains by their binding to caveolin, in accordance with their putative role in membrane trafficking [Baillat et al. (2001) Mol. Biol. Cell 12, 663-673].  相似文献   

3.
The involvement of the ethanolamine-linked phosphoglyceride fraction (PE) in neutrophil signal transduction is suggested by the stimulus-induced release of arachidonic acid from PE (Chilton, F. H., and Connell, T. R. (1988) J. Biol. Chem. 263, 5260-5265) and by the synthesis of acetylated PE species, predominantly 1-O-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine (alkenylacetyl-GPE; Tessner, T. G., and Wykle, R. L. (1987) J. Biol. Chem. 262, 12660-12664) in stimulated cells. In the studies reported here, we investigated the relationship between arachidonic acid release from PE and generation of the lysophospholipid precursor required in the biosynthesis of alkenylacetyl-GPE. In order to follow these reactions, we prelabeled neutrophils with 1-O-[3H]alk-1'-enyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine (alkenyl-acyl-GPE). We also followed the hydrolysis of endogenous PE by analysis as the dinitrophenyl derivative using a high pressure liquid chromatography method we developed. Our results coupled with those of Chilton et al. (Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L. (1984) J. Biol. Chem. 259, 12014-12019) indicate that in human neutrophils the metabolism of alkenylacyl-GPE and alkylacyl-sn-glycero-3-phosphocholine (GPC) are strikingly similar with regard to arachidonate metabolism. When added to neutrophils, both 1-O-[3H]alkenyl-2-lyso-GPE and 1-O-[3H]alkyl-2-lyso-GPC are acylated predominantly with arachidonic acid, and the resulting arachidonoyl-containing phospholipids are extensively deacylated upon stimulation. However, hydrolysis of PE in the neutrophil differs from hydrolysis of choline-containing phosphoglycerides in that stimulation leads to a greater accumulation of the ethanolamine-linked lysophospholipid. A comparison of the molecular species of endogenous PE (based on molar concentrations measured as the dinitrophenyl derivative) from resting and stimulated neutrophils indicated that only those species which contain arachidonate are significantly hydrolyzed.  相似文献   

4.
L Garfinkel  D Garfinkel 《Biochemistry》1984,23(15):3547-3552
We have attempted to resolve the differences between the levels of free Mg2+ in muscle calculated by Wu et al. [Wu, S. T., Pieper, G. M., Salhany, J. M., & Eliot, R. S. (1981) Biochemistry 20, 7399-7403] (2.5 mM in guinea pig heart) and by Gupta and Moore [Gupta, R. K., & Moore, R. D. (1980) J. Biol. Chem. 255, 3987-3993] (0.6 mM in frog skeletal muscle) on the basis of substantially identical measurements by 31P NMR of the phosphate peaks in the spectrum of MgATP2-. The differences depend on the methods of calculation, including which reactions in which multiple equilibria are being considered. Biochemists and physical chemists customarily use different working definitions of the stability constant for MgATP2- in particular. Wu et al. used in their calculations, without reconciliation, methods involving three different operational definitions of the chelation equilibria involved. An algorithm for calculating Mg2+ and total ATP, which can be carried out with a hand calculator, is described here. With it, we calculated Mg2+ levels that agree with those determined by Gupta et al. [Gupta, R. K., Benkovic, J. L., & Rose, Z. B. (1978) J. Biol. Chem. 253, 6165-6171] with their in vitro systems. We therefore agree with the finding of Gupta and Moore that the Mg2+ level in skeletal and cardiac muscle is 0.6 mM.  相似文献   

5.
In the present paper, we report the isolation and characterization of embryonic corneal membrane glycoproteins that demonstrate specific affinity for collagen. Two collagen binding proteins have been isolated: a novel 70-kDa protein and a 47-kDa protein which is apparently similar to that reported by Kurkinen et al. (Kurkinen, M., Taylor, A., Garrels, J. I., and Hogan, B. (1984) J. Biol. Chem. 259, 5915-5922). Both proteins label metabolically with [35S]methionine and [3H] glucosamine. 125I iodination of cell surface proteins revealed that the two collagen binding proteins are expressed on the epithelial cell surface. The 70-kDa protein appears to be an integral membrane protein, whereas the 47-kDa protein can be removed from membranes by alkali treatment. The isolated proteins exhibit binding to native type IV collagen as well as heat-denatured type I collagen. It seems likely that we have isolated, at least in part, the cell surface receptor or receptor complex that binds collagen to the basal surface of epithelia.  相似文献   

6.
7.
Recently two reports [J. A. Robertson et al. (1986) J. Biol. Chem. 261, 15794-15799 and R. M. Bayney et al. (1987) J. Biol. Chem. 262, 572-575] have appeared concerning the nucleotide sequence of quinone reductase cDNA clones. Although the cDNA clones are virtually identical, they diverge in the 5' region that encodes the NH2 terminus of the protein. In order to clarify the sequence of this region, we have isolated quinone reductase clones from a rat genomic library using a cDNA clone, pDTD55, isolated and characterized by our laboratory. We have determined the sequence of exons 1 and 2 of the structural gene by double-stranded sequencing using oligonucleotide primers. The sequence of exons 1 and 2 of the quinone reductase structural gene along with our previous nucleotide sequence analysis of pDTD55 as well as conventional amino acid sequence analysis of the purified protein indicates that quinone reductase is composed of 274 amino acids with a molecular weight of 30,946. These data agree with the published sequence of lambda NMOR1 reported by Robertson et al.  相似文献   

8.
In an attempt to get some clue as to the function of M(r) 25,000 protein, a protein Ser/Thr kinase substrate detected in Xenopus laevis oocytes [Hashimoto, E. et al. (1995) J. Biochem. 118, 453-460], the binding protein was surveyed using the (32)P-labeled protein by casein kinase II as a screening probe. When the cytosolic proteins from oocytes were transferred to a polyvinylidene fluoride membrane and incubated with the labeled protein, only one protein with M(r) 43,000 was visualized on autoradiography. This protein was purified to a nearly homogeneous state through several column chromatography steps. The amino acid sequence of the amino-terminal region of this protein identified it as a kind of serine protease inhibitor (serpin) [Holland, L.J. et al. (1992) J. Biol. Chem. 267, 7053-7059]. However, the M(r) 25,000 protein did not have any effect on the inhibitory action of this serpin on alpha-chymotrypsin. In addition, several binding proteins were also detected in the particulate fraction of oocytes, although the exact identity of these proteins is not clear at this time. These results suggest that the M(r) 25,000 protein may play some role(s) by interacting with these binding proteins in Xenopus oocytes.  相似文献   

9.
Fenton chemistry [Fenton (1894) J. Chem. Soc. 65, 899-910] techniques were employed to identify the residues involved in metal binding located at the active sites of restriction endonucleases. This process uses transition metals to catalytically oxidize the peptide linkage that is in close proximity to the amino acid residues involved in metal ligation. Fe2+ was used as the redox-active transition metal. It was expected that Fe2+ would bind to the endonucleases at the Mg2+-binding site [Liaw et al. (1993) Biochemistry 32, 7999-4003; Ermácora et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6383-6387; Soundar and Colman (1993) J. Biol. Chem. 268, 5264-5271; Wei et al. (1994) Biochemistry 33, 7931-7936; Ettner et al. (1995) Biochemistry 34, 22-31; Hlavaty and Nowak (1997) Biochemistry 36, 15515-15525). Fe2+-mediated oxidation was successfully performed on TaqI endonulease, suggesting that this approach could be applied to a wide array of endonucleases [Cao and Barany (1998) J. Biol. Chem. 273, 33002-33010]. The restriction endonucleases BamHI, FokI, BglI, BglII, PvuII, SfiI, BssSI, BsoBI, EcoRI, EcoRV, MspI, and HinP1I were subjected to oxidizing conditions in the presence of Fe2+ and ascorbate. All proteins were inactivated upon treatment with Fe2+ and ascorbate. BamHI, FokI, BglI, BglII, PvuII, SfiI, BssSI, and BsoBI were specifically cleaved upon treatment with Fe2+/ascorbate. The site of Fe2+/ascorbate-induced protein cleavage for each enzyme was determined. The Fe2+-mediated oxidative cleavage of BamHI occurs between residues Glu77 and Lys78. Glu77 has been shown by structural and mutational studies to be involved in both metal ligation and catalysis [Newman et al. (1995) Science 269, 656-663; Viadiu and Aggarwal (1998) Nat. Struct. Biol. 5, 910-916; Xu and Schildkraut (1991) J. Biol. Chem. 266, 4425-4429]. The sites of Fe2+/ascorbate-induced cleavage for PvuII, FokI, BglI, and BsoBI agree with the metal-binding sites identified in their corresponding three-dimensional structures or from mutational studies [Cheng et al. (1994) EMBO J. 13, 3297-3935; Wah et al. (1997) Nature 388, 97-100; Newman et al. (1998) EMBO J. 17, 5466-5476; Ruan et al. (1997) Gene 188, 35-39]. The metal-binding residues of BglII, SfiI, and BssSI are proposed based on amino acid sequencing of their Fe2+/ascorbate-generated cleavage fragments. These results suggest that Fenton chemistry may be a useful methodology in identifying amino acids involved in metal binding in endonucleases.  相似文献   

10.
The intracellular expression of single-chain Fv antibody fragments (scFv) in eukaryotic cells has an enormous potential in functional genomics and therapeutics [Marasco (1997) Gene Ther. 4, 11-15; Richardson and Marasco (1995) Trends Biotechnol. 13, 306-310]. However, the application of these so-called intrabodies is currently limited by their unpredictable behavior under the reducing conditions encountered inside eukaryotic cells, which can affect their stability and solubility properties [W?rn et al. (2000) J. Biol. Chem. 275, 2795-2803; Biocca et al. (1995) Bio/Technology 13, 1110-1115]. We present a novel system that enables selection of stable and soluble intrabody frameworks in vivo without the requirement or knowledge of antigens. This system is based on the expression of single-chain antibodies fused to a selectable marker that can control gene expression and cell growth. Our results show that the activity of a selectable marker fused to well characterized scFvs [W?rn et al. (2000) J. Biol. Chem. 275, 2795-2803] correlates with the solubility and stability of the scFv moieties. This method provides a unique tool to identify stable and soluble scFv frameworks, which subsequently serve as acceptor backbones to construct intrabody complementarity determining region libraries by randomization of hypervariable loops.  相似文献   

11.
A cDNA clone of silkworm (Bombyx mori) larval hemolymph antitrypsin (sw-AT) has been isolated from a fat body cDNA library. The cDNA has an open reading frame which codes a 392-amino acid residue polypeptide comprising a 16-residue signal peptide and a 376-residue mature sw-AT of Mr 41,805. The reactive site of sw-AT for inhibition of bovine trypsin [Sasaki, T. et al. (1987) J. Biochem. 102, 433-441] was identified as Lys343-Val344. Alignment of the sw-AT amino acid sequence with those of 11 members of the serpin superfamily of proteins clearly confirmed the homology of sw-AT with serpins. The amino acid sequence of sw-AT is 56% identical with that of the proteinase inhibitor from a lepidopteron, Manduca sexta [Kanost, M.R. et al. (1989) J. Biol. Chem. 264, 965-972], but the sequence around the reactive site shows no homology and the inhibitory specificity for proteinases is very different.  相似文献   

12.
Mammalian liver contains an endocytic, recycling receptor that mediates the clearance of hyaluronan (HA) and chondroitin sulfate from the circulation. McCourt et al. [J. Biol. Chem. 269 (1994) 30081] previously reported that this endocytic liver HA receptor was ICAM-1. In contrast, we purified this HA receptor for endocytosis (HARE) from rat liver sinusoidal endothelial cells (LECs) and obtained two novel large proteins [Zhou et al., J. Biol. Chem. 274 (1999) 33831]. The goal of the present study was to clarify this inconsistency and determine whether CD44, which is also an HA receptor, or ICAM-1 (CD54) is identical to, or is part of, HARE. Although isolated liver LECs contain HARE, CD44, and ICAM-1, confocal fluorescence microscopy showed that the two latter proteins have cellular distributions that are distinct from and essentially nonoverlapping with HARE. HA accumulation by cultured LECs was inhibited >98% by an antibody against HARE and unaffected by antibodies to ICAM-1 or CD44, indicating that virtually all specific HA uptake is mediated by HARE and not by ICAM-1 or CD44. Finally, no reactivity was observed against purified HARE in an ELISA-based assay using CD44 or ICAM-1 antibodies. The results confirm that the mammalian endocytic HA receptor is HARE and is not ICAM-1 or CD44.  相似文献   

13.
14.
Two glutamate-binding proteins (71 and 63 kDa) were previously purified from synaptic plasma membranes (Chen, J.-W., Cunningham, M.D., Galton, V., and Michaelis, E. K. (1988) J. Biol. Chem. 263, 417-426). These proteins may play a role in glutamate neurotransmission in brain. Polyclonal antibodies were raised against the denatured glutamate-binding proteins in rabbits, including sets of antibodies against each of the binding proteins. The antibodies reacted specifically against both 71- and 63-kDa proteins. The antibodies recognized the denatured form of the proteins in Western blots and the native state of the proteins in enzyme-linked immunosorbent assays and in immunoaffinity chromatography and extraction procedures. All antibodies labeled most strongly the 71-kDa protein in Western blots, but extracted both proteins from solubilized synaptic membrane preparations. These findings indicate that the two proteins are closely related immunologically but the reactivity on Western blots differs between these two proteins. Immunoextraction of the 71- and 63-kDa proteins led to a approximately 60% decrease in L-[3H]glutamate-binding activity associated with synaptic membrane proteins. Of the brain subcellular fractions examined, the isolated synaptic plasma membranes had the strongest reaction in enzyme-linked immunosorbent assays toward the antiglutamate-binding protein antisera. Electron microscopy combined with gold particle immunohistochemistry revealed the sites labeled by the antibodies as entities present either on the surface or within the postsynaptic membranes and the associated densities of brain nerve ending particles (synaptosomes). Immunohistochemical procedures of gold labeling with silver enhancement of labeled sites revealed selective neuronal labeling in brain regions enriched in glutamate neurotransmitter pathways such as the hippocampus. Labeling was along dendrites and around cell bodies of pyramidal neurons. Based on the pattern of histochemical labeling, the distribution of immune reactivity in synaptic membranes, and the extractions of a major component of membrane glutamate-recognizing proteins by the antibodies, the glutamate-binding proteins must play a role in glutamate neurotransmission.  相似文献   

15.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

16.
Binding proteins for asialoorosomucoid were prepared from rat liver previously labeled in vivo with [3H]leucine by affinity chromatography on asialoorosomucoid-Sepharose 4B. They were subjected again to the same affinity chromatography and eluted into two fractions successively with 10 mM Tris-HCl buffer, pH 7.8, containing 1.25 M NaCl, 1% Triton X-100 and 50 mM lactose and 20 mM ammonium acetate buffer, pH 6.0, containing 1.25 M NaCl and 1% Triton X-100, and designated as ABP-I and ABP-II (asialoorosomucoid binding proteins), respectively. ABP-I corresponds to the receptor protein specific for asialoglycoproteins which has been extensively investigated by Ashwell and collaborators (J. Biol. Chem. 254, 1038-1043, 1979). ABP-II is different from ABP-I in several properties such as molecular weight, antigenicity and solubility. The molecular weight of ABP-II was estimated to be 29,000 by SDS-PAGE. On gel filtration it behaved as a pentamer with an apparent molecular weight of 150,000. Unlike ABP-I, ABP-II showed no detectable binding activity when assayed according to the procedures of Hudgin et al. (J. Biol. Chem. 249, 5536-5543, 1974). The calcium ion was, however, essential for the binding of ABP-II to asialoorosomucoid-Sepharose 4B similar to ABP-I. ABP-II can be extracted from the total microsomes of rat liver in 1.0 M NaCl by sonication after freezing and thawing. This suggests that ABP-II is either a soluble protein or a peripheral membrane protein loosely attached to the intracisternal cavities of the microsomal membranes.  相似文献   

17.
A novel form of the Go alpha-subunit (alpha o2) has been identified by molecular cloning (Hsu et al., J. Biol. Chem. 265, 11220-11226, 1990). An antibody was generated against a synthetic peptide corresponding to a region of the protein encoded by alpha o2 cDNA. The antibody reacted with an apparently single 39 kDa protein in membrane preparations of rodent brain and with a 39 kDa pertussis toxin substrate in membranes of rodent neuroendocrine and pituitary cells. A previously produced antibody raised against a region common to proteins encoded by alpha o2 cDNA and the previous cloned alpha o1 cDNA (Itoh et al., Proc. Natl. Acad. Sci. USA 83, 3776-3780, 1986) recognized proteins of 39 and 40 kDa in preparations of bovine, porcine and rodent brain and pertussis toxin substrates of 39 and 40 kDa in membranes of rodent neuroendocrine and pituitary cells. We conclude that the 39 kDa Go alpha subunit is encoded by alpha o2 cDNA.  相似文献   

18.
Mycoplasma fermentans seems to be involved in several pathogenic conditions in humans, and is among other things capable of fusing with T-cells and lymphocytes. The choline-containing phosphoglycolipid 6'-O-(3"-phosphocholine-2"-amino-1"-phospho-1",3"-propanediol)-alpha-D-glucopyranosyl-(1'-->3)-1,2-diacylglycerol (MfGL-II) in the membrane of M. fermentans has been suggested to enhance the fusion process, and the characteristics of MfGL-II were therefore investigated. When a cell culture ages the fraction of MfGL-II increases, and the fraction of the other major membrane lipid, phosphatidylglycerol (PtdGro), decreases concomitantly. Swelling experiments showed that the permeability and osmotic fragility are markedly reduced in aged cells. MfGL-II is selectively released into the surrounding medium when aged M. fermentans cells are incubated in buffer containing EDTA. The physico-chemical properties of MfGL-II were studied by NMR spectroscopy and differential scanning calorimetry, and they can explain the biochemical results. The temperature for the transition between gel and lamellar liquid crystalline (Lalpha) phases is 35-45 degrees C higher for MfGL-II than for PtdGro, which most probably gives rise to the reduced permeability in aged cells. At high water contents MfGL-II forms an Lalpha phase and isotropic aggregates which were interpreted to be vesicles with a radius of approximately 450 A. It is proposed that MfGL-II forms vesicles in the surrounding medium when it is released from the cell membrane. Neither EDTA nor Ca2+ ions have a significant influence on the aggregate structures formed by MfGL-II. Our results indicate that MfGL-II has no fusogenic properties. It is more probable that a recently identified lysolipid in the M. fermentans membrane acts as a fusogen.  相似文献   

19.
Human full-term placentas possess adenyl cyclase activity which was assayed by the transformation of [α-32P]ATP to cyclic 3′,5′-[32P]AMP according to the method of Krishnaet al. (G. Krishna, B. Weiss and B. B. Brodie), J. Pharmacol. Exptl. Therap., 163 (1968) as modified by Rodbell (M. Rodbell, J. Biol. Chem., 242 (1967) 5744).  相似文献   

20.
Costa, L.E., Reynafarje, B. and Lehninger, A.L. [(1984) J. Biol. Chem. 259, 4802-4811] have reported 'second-generation' measurements of the H+/O ratio approaching 8.0 for vectorial H+ translocation coupled to succinate oxidation by rat liver mitochondria. In a Commentary in this Journal [Krab, K., Soos, J. and Wikstr?m, M. (1984) FEBS Lett. 178, 187-192] it was concluded that the measurements of Costa et al. significantly overestimated the true H+/O stoichiometry. It is shown here that the mathematical simulation on which Krab et al. based this claim is faulty and that data reported by Costa et al. had already excluded the criticism advanced by Krab et al. Also reported are new data, obtained under conditions in which the arguments of Krab et al. are irrelevant, which confirm that the H+/O ratio for succinate oxidation extrapolated to level flow is close to 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号