首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parathyroid hormone (PTH) activates multiple signaling pathways following binding to the PTH1 receptor in osteoblasts. Previous work revealed a discrepancy between cAMP stimulation and CRE reporter activation of truncated PTH peptides, suggesting that additional signaling pathways contribute to activation of the CRE. Using a CRE‐Luciferase reporter containing multiple copies of the CRE stably transfected into the osteoblastic cell line Saos‐2, we tested the ability of modulators of alternative pathways to activate the CRE or block the PTH‐induced activation of the CRE. Activators of non‐cyclic AMP pathways, that is, EGF (Akt, MAPK, JAK/STAT pathways); thapsigargin (intracellular calcium pathway); phorbol myristate acetate (protein kinase C, PKC pathway) induced minor increases in CRE‐luciferase activity alone but induced dramatic synergistic effects in combination with PTH. The protein kinase A (PKA) inhibitor H‐89 (10 µM) almost completely blocked PTH‐induced activation of the CRE‐reporter. Adenylate cyclase inhibitors SQ 22536 and DDA had profound and time‐dependent biphasic effects on the CRE response. The MAPK inhibitor PD 98059 partially inhibited basal and PTH‐induced CRE activity to the same degree, while the PKC inhibitor bisindolylmaleimide (BIS) had variable effects. The calmodulin kinase II inhibitor KN‐93 had no significant effect on the response to PTH. We conclude that non‐cAMP pathways (EGF pathway, calcium pathway, PKC pathway) converge on, and have synergistic effects on, the response of a CRE reporter to PTH. J. Cell. Biochem. 106: 887–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
In determining the mechanism of the chemokinetic action of the thiol protease inhibitor, E-64, in endothelial cell monolayers subjected to wounding, we synthesized succinyl-leucyl-agmatine (SLA), an analogue of E-64 that lacked the epoxy group and protease inhibitory effect. We observed that this analogue retained its chemokinetic effect on wounded endothelial cells. Its stimulatory action on endothelial cell polarization response to wounding was rapid and associated with directed cell migration. Furthermore, its effect on cellular polarization was blocked by protein kinase C (PKC) inhibitors and mimicked by pharmacologic agents that stimulated PKC activity. To determine if SLA's chemokinetic action was mediated by protein kinase C activation, we compared the effects of SLA and the tumor promoter phorbol myristate acetate (PMA) on the translocation of PKC activity in endothelial cells. We observed that both SLA and PMA induced the translocation of PKC activity from the cytosolic to the particulate fraction of the cells. We also observed that both SLA and PMA induced the phosphorylation of two proteins (Mr 23.4 and 36.5 kDa) in intact 32P-labeled cells. Thus, SLA stimulates the endothelial cell locomotor response to wounding by stimulating PKC activity.  相似文献   

3.
We have investigated the role of protein kinase C (PKC) signal transduction pathways in parathyroid hormone (PTH) regulation of insulin-like growth factor-binding protein-5 (IGFBP-5) gene expression in the rat osteoblast-like cell line UMR-106-01. Involvement of the PKC pathway was determined by the findings that bisindolylmaleimide I inhibited 40% of the PTH effect, and 1 microM bovine PTH-(3-34) stimulated a 10-fold induction of IGFBP-5 mRNA. PTH-(1-34) and PTH-(3-34) (100 nM) both stimulated PKC-delta translocation from the membrane to the nuclear fraction. Rottlerin, a PKC-delta-specific inhibitor, and a dominant negative mutant of PKC-delta were both able to significantly inhibit PTH-(1-34) and PTH-(3-34) induction of IGFBP-5 mRNA, suggesting a stimulatory role for PKC-delta in the effects of PTH. Phorbol 12-myristate 13-acetate (PMA) stimulated PKC-alpha translocation from the cytosol to the membrane and inhibited approximately 50% of the PTH-(1-34), forskolin, and 8-bromoadenosine 3',5'-cyclic monophosphate-stimulated IGFBP-5 mRNA levels, suggesting that PKC-alpha negatively regulates protein kinase A (PKA)-mediated induction of IGFBP-5 mRNA. These results suggest that the induction of IGFBP-5 by PTH is both PKA and PKC dependent and PKC-delta is the primary mediator of the effects of PTH via the PKC pathway.  相似文献   

4.
Src-suppressed C kinase substrate (SSeCKS) plays a role in membrane-cytoskeletal remodeling to regulate mitogenesis, cell differentiation, and motility. Previous study showed that lipopolysaccharide (LPS) induced a selective and strong expression of SSeCKS in the vascular endothelial cells of lung. Here we show that LPS stimulation elevated expression of SSeCKS mRNA and protein in Rat pulmonary microvascular endothelial cell (RPMVEC). LPS potentiated SSeCKS phosphorylation in a time- and dose-dependent manner, and partly induced translocation of SSeCKS from the cytosol to the membrane after LPS challenge. The PKC inhibitor, Calphostin C, significantly decreased LPS-induced phosphorylation of SSeCKS, inhibited SSeCKS translocation and actin cytoskeleton reorganization after LPS challenge, suggesting that PKC may play a role in LPS-induced SSeCKS translocation and actin rearrangement. We conclude that SSeCKS is located downstream of PKC and that SSeCKS and PKC are both necessary for LPS-induced stress fiber formation. Chun Cheng and Haiou Liu are contributed equally to this work.  相似文献   

5.
Parathyroid hormone (PTH) significantly affects osteoblast function by altering gene expression. We have identified neuron-derived orphan receptor-1 (NOR-1) as a PTH-induced primary gene in osteoblastic cells. NOR-1, Nurr1, and Nur77 comprise the NGFI-B nuclear orphan receptor family and Nurr1 and Nur77 are PTH-induced primary osteoblastic genes. Ten nM PTH maximally induced NOR-1 mRNA at 2h in primary mouse osteoblasts and at 1h in mouse calvariae. Cycloheximide pretreatment did not inhibit PTH-induced NOR-1 mRNA. PTH activates cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. Forskolin (PKA activator) and PMA (PKC activator) mimicked PTH-induced NOR-1 mRNA. Ionomycin (calcium ionophore) and PTH(3-34), which do not activate PKA, failed to induce NOR-1 mRNA. PKA inhibition with H89 blocked PTH- and FSK-induced NOR-1 mRNA. PMA pretreatment to deplete PKC inhibited PMA-induced, but not PTH-induced, NOR-1 mRNA. We conclude that NOR-1 is a PTH-regulated primary osteoblastic gene that is induced mainly through cAMP-PKA signaling.  相似文献   

6.
7.
HJ Sung  SJ Son  SJ Yang  KJ Rhee  YS Kim 《BMB reports》2012,45(7):414-418
Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.  相似文献   

8.
9.
The actions of parathyroid hormone (PTH) on the renal cortex are thought to be mediated primarily by cAMP-dependent protein kinase (PKA) with some suggestion of a role for protein kinase C (PKC). However, present methods for assaying PKA and PKC in subcellular fractions are insensitive and require large amounts of protein. Recently, a sensitive method for measuring the activity of protein kinases has been reported. This method uses synthetic peptides as substrates and a tandem chromatographic procedure for isolating the phosphorylated peptides. We have adapted this method to study the effect of PTH on PKA and PKC activity using thin slices of rat renal cortex. PTH (250 nM) stimulated cytosolic PKA activity four- to fivefold within 30 s, and PKA activity was sustained for at least 5 min. PTH also rapidly stimulated PKC activity in the membrane fraction and decreased PKC activity in the cytosol. These changes were maximal at 30 s, but unlike changes in PKA, they declined rapidly thereafter. PTH significantly activated PKC only at concentrations of 10 nM or greater. This study demonstrates that PTH does activate PKC in renal tissue, although the duration of activation is much less than for PKA. It also demonstrates that a combination of synthetic peptides with tandem chromatography can be used as a sensitive assay procedure for protein kinase activity in biological samples.  相似文献   

10.
Li HB  Ge YK  Zhang L  Zheng XX 《Life sciences》2006,79(12):1186-1193
The purpose of the present study was to examine the effects of astragaloside IV, a saponin isolated from Astragalus membranaceus (Fisch) Bge, on the impairment of barrier function induced by acute high glucose in cultured human vein endothelial cells. High glucose (27.8 mM) induced a decrease in transendothelial electrical impedance and an increase in cell monolayer permeability in human umbilical vein endothelial cells. Endothelial barrier dysfunction stimulated by high glucose was accompanied by translocation and activation of protein kinase C (PKC), the redistribution of F-actin and formation of intercellular gaps, suggesting that increases in PKC activity and rearrangement of F-actin could be associated with endothelial barrier dysfunction induced by acute high glucose. Application of astragaloside IV inhibited high glucose-induced endothelial barrier dysfunction in a dose-dependent manner, which is compatible with inhibition of PKC translocation and improvement of F-actin rearrangements. Western blot analysis revealed that high glucose-induced PKC alpha and beta2 overexpression in the membrane fraction were significantly reduced by astragaloside IV. These findings indicate that astragaloside IV protected endothelial cells from high glucose-induced barrier impairment by inhibiting PKC activation, as well as improving cytoskeleton remodeling.  相似文献   

11.
Effects of growth hormone (GH), insulin-like growth factor I (IGF-I), and endothelin-1 (ET-1) on endothelial cell migration and the underlying molecular mechanisms were explored using a human umbilical cord endothelial cell line, ECV304 cells, in vitro. Treatment of the cells with IGF-I or ET-1, but not GH, stimulated the cell migration. Interestingly, however, ET-1-induced, but not IGF-I-induced, migration of the cells was inhibited by GH. Both ET-1 and IGF-I caused activation of mitogen-activated protein kinase (MAPK) in the cells, and GH eliminated the MAPK activation produced by ET-1 but not that produced by IGF-I. On the other hand, migration of the cells was stimulated by protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate. ET-1 promoted PKC activity, and a PKC inhibitor, GF-109203X, blocked ET-1-induced cell migration. Although GH inhibited ET-1-induced cell migration and MAPK activity, it did not block ET-1-induced PKC activation. Thus ET-1 stimulation of endothelial cell migration appears to be mediated by PKC/MAPK pathway, and GH may inhibit the MAPK activation by ET-1 at the downstream of PKC.  相似文献   

12.
Distinct protein kinase C (PKC) isoforms differentially regulate cellular proliferation in rat microvascular endothelial cells (EC). Overexpression of PKCalpha has little effect on proliferation, whereas PKCdelta slows endothelial cell proliferation and induces S-phase arrest. Analyses were performed on EC overexpressing PKCalpha (PKCalphaEC) or PKCdelta (PKCdeltaEC) to determine the role of specific cell cycle regulatory proteins in the PKCdelta-induced cell cycle arrest. Serum-induced stimulation of cyclins D1, E, and A-associated kinase activity was delayed by 12 h in the PKCdeltaEC line in association with S-phase arrest. However, the protein levels for cyclins D1, E, and A were similar. Nuclear accumulation of cyclin D1 protein in response to serum was also delayed in PKCdeltaEC. In the PKCdeltaEC line, serum induced p27(Kip1) but not p16(Ink4a) or p21(Cip1). Serum did not affect p27(Kip1) levels in the control vascular endothelial cell line. Immunoprecipitation-Western blotting analysis of p27(Kip1) showed serum stimulation of the vascular endothelial cell line resulted in increased amounts of cyclin D1 bound to p27(Kip1). In the PKCdeltaEC line, serum did not increase the amount of cyclin D1 bound to p27(Kip1). Transfection of full-length p27(Kip1) antisense into the PCKdeltaEC line reversed the S-phase arrest and resulted in normal cell cycle progression, suggesting a critical role for p27(Kip1) in the PKCdelta-mediated S-phase arrest.  相似文献   

13.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from the blood to the extracellular fluid environment of the brain. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain capillary endothelial cells, thus forming a functional barrier to lipid-soluble drugs, notably, antitumor agents. It is of interest to develop an in vitro BBB model that stably expresses P-gp to investigate the mechanisms of regulation in expression and activity. The rat brain endothelial cell line, GPNT, was derived from a previously characterized rat brain endothelial cell line. A strong expression of P-gp was found in GPNT monocultures, whereas the multidrug resistance-associated pump Mrp1 was not expressed. The transendothelial permeability coefficient of the P-gp substrate vincristine across GPNT monolayers was close to the permeability coefficient of bovine brain endothelial cells cocultured with astrocytes, a previously documented in vitro BBB model. Furthermore, the P-gp blocker cyclosporin A induced a large increase in apical to basal permeability of vincristine. Thus, P-gp is highly functional in GPNT cells. A 1-h treatment of GPNT cells with dexamethasone resulted in decreased uptake of vincristine without any increase in P-gp expression. This effect could be mimicked by protein kinase C (PKC) activation and prevented by PKC inhibition, strongly suggesting that activation of P-gp function may involve a PKC-dependent pathway. These results document the GPNT cell line as a valuable in vitro model for studying drug transport and P-gp function at the BBB and suggest that activation of P-gp activity at the BBB might be considered in chemotherapeutic treatment of cancer patients.  相似文献   

14.
15.
16.
Endocytosis and intracellular trafficking of the human parathyroid hormone receptor subtype 1 (hPTH1-Rc) and its ligands was monitored independently by real-time fluorescence microscopy in stably transfected HEK-293 cells. Complexes of fluorescence-labeled parathyroid hormone (PTH)-(1-34) agonist bound to the hPTH1-Rc internalized rapidly at 37 degrees C via clathrin-coated vesicles, whereas fluorescent PTH-(7-34) antagonist-hPTH1Rc complexes did not. A functional C terminus epitope-tagged receptor (C-Tag-hPTH1-Rc) was immunolocalized to the cell membrane and, to a lesser extent, the cytoplasm. PTH and PTH-related protein agonists stimulated C-Tag-hPTH1-Rc internalization. Relocalization to the cell membrane occurred 1 h after removal of the ligand. Endocytosis of fluorescent PTH agonist-hPTH1-Rc complexes was blocked by the protein kinase C (PKC) inhibitor staurosporine but not by the specific protein kinase A inhibitor N-(2-(methylamino)ethyl)-5-isoquinoline-sulfonamide. Fluorescent PTH antagonist-hPTH1-Rc complexes were rapidly internalized after PKC activation by phorbol 12-myristate 13-acetate or thrombin, but not after stimulation of the cAMP/protein kinase A pathway by forskolin. In cells co-expressing the hPTH1-Rc and a green fluorescent protein-beta-arrestin2 fusion protein (beta-Arr2-GFP), PTH agonists stimulated beta-Arr2-GFP mobilization to the cell membrane. Subsequently, fluorescent PTH-(1-34)-hPTH1Rc complexes and beta-Arr2-GFP co-localized intracellularly. In conclusion, agonist-activated hPTH1-Rc internalization involves beta-arrestin mobilization and targeting to clathrin-coated vesicles. Our results also indicate that receptor occupancy, rather than receptor-mediated signaling, is necessary, although not sufficient, for endocytosis of the hPTH1-Rc. Activation of PKC, however, is absolutely required.  相似文献   

17.
Reactive oxygen species (ROS) formation plays a major role in diabetes-induced endothelial dysfunction, though the molecular mechanism(s) involved and the contribution of nitric oxide (NO) are still unclear. This study using bovine retinal endothelial cells was aimed at assessing (i) the role of oxygen-dependent vs. NO-dependent oxidative stress in the endothelial cell permeability alterations induced by the diabetic milieu and (ii) whether protein kinase C (PKC) activation ultimately mediates these changes. Superoxide, lipid peroxide, and PKC activity were higher under high glucose (HG) vs. normal glucose throughout the 30 d period. Nitrite/nitrate and endothelial NO synthase levels increased at 1 d and decreased thereafter. Changes in monolayer permeability to 125I-BSA induced by 1 or 30 d incubation in HG or exposure to advanced glycosylation endproduct were reduced by treatment with antioxidants or PKC inhibitors, whereas NO blockade prevented only the effect of 1 d HG. HG-induced changes were mimicked by a PKC activator, a superoxide generating system, an NO and superoxide donor, or peroxynitrite (attenuated by PKC inhibition), but not a NO donor. The short-term effect of HG depends on a combined oxidative and nitrosative stress with peroxynitrite formation, whereas the long-term effect is related to ROS generation; in both cases, PKC ultimately mediates permeability changes.  相似文献   

18.
The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.  相似文献   

19.
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78±6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86±18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1.  相似文献   

20.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号