首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phocein is a widely expressed, highly conserved intracellular protein of 225 amino acids, the sequence of which has limited homology to the sigma subunits from clathrin adaptor complexes and contains an additional stretch bearing a putative SH3-binding domain. This sequence is evolutionarily very conserved (80% identity between Drosophila melanogaster and human). Phocein was discovered by a yeast two-hybrid screen using striatin as a bait. Striatin, SG2NA, and zinedin, the three mammalian members of the striatin family, are multimodular, WD-repeat, and calmodulin-binding proteins. The interaction of phocein with striatin, SG2NA, and zinedin was validated in vitro by coimmunoprecipitation and pull-down experiments. Fractionation of brain and HeLa cells showed that phocein is associated with membranes, as well as present in the cytosol where it behaves as a protein complex. The molecular interaction between SG2NA and phocein was confirmed by their in vivo colocalization, as observed in HeLa cells where antibodies directed against either phocein or SG2NA immunostained the Golgi complex. A 2-min brefeldin A treatment of HeLa cells induced the redistribution of both proteins. Immunocytochemical studies of adult rat brain sections showed that phocein reactivity, present in many types of neurons, is strictly somato-dendritic and extends down to spines, just as do striatin and SG2NA.  相似文献   

2.
Striatin is an intracellular protein characterized by four protein-protein interaction domains, a caveolin-binding motif, a coiled-coil structure, a calmodulin-binding domain, and a WD repeat domain, suggesting that it is a signaling or a scaffold protein. Down-regulation of striatin, which is expressed in a few subsets of neurons, impairs the growth of dendrites as well as rat locomotor activity (Bartoli, M., Ternaux, J. P., Forni, C., Portalier, P., Salin, P., Amalric, M., and Monneron, A. (1999) J. Neurobiol. 40, 234-243). Zinedin, a "novel" protein described here, and SG2NA share with striatin identical protein-protein interaction domains and the same overall domain structure. A phylogenetic analysis supports the hypothesis that they constitute a multigenic family deriving from an ancestral gene. DNA probes and antibodies raised against specific domains of each protein showed that zinedin is mainly expressed in the central nervous system, whereas SG2NA, of more widespread occurrence, is mainly expressed in the brain and muscle. All three proteins are both cytosolic and membrane-bound. All three bind calmodulin in the presence of Ca(2+). In rat brain, SG2NA and striatin are generally not found in the same neurons. Both localize to the soma and dendrites, suggesting that they share a similar type of addressing and closely related functions.  相似文献   

3.
Caveolins are scaffolding proteins able to collect on caveolae a large number of signalling proteins bearing a caveolin-binding motif. The proteins of the striatin family, striatin, SG2NA, and zinedin, are composed of several conserved, collinearly aligned, protein-protein association domains, among which a putative caveolin-binding domain [Castets et al. (2000) J. Biol. Chem. 275, 19970-19977]. They are associated in part with membranes. These proteins are mainly expressed within neurons and thought to act both as scaffolds and as Ca(2+)-dependent signalling proteins [Bartoli et al. (1999) J. Neurobiol. 40, 234-243]. Here, we show that (1) rat brain striatin, SG2NA and zinedin co-immunoprecipitate with caveolin-1; (2) all are pulled down by glutathione-S-transferase (GST)-caveolin-1; (3) a fragment of recombinant striatin containing the putative caveolin-binding domain binds GST-caveolin-1. Hence, it is likely that the proteins of the striatin family are addressed to membrane microdomains by their binding to caveolin, in accordance with their putative role in membrane trafficking [Baillat et al. (2001) Mol. Biol. Cell 12, 663-673].  相似文献   

4.
Striatin, SG2NA and zinedin, the three mammalian members of the striatin family are multimodular WD-repeat, calmodulin and calveolin-binding proteins. These scaffolding proteins, involved in both signaling and trafficking, are highly expressed in neurons. Using ultrastructural immunolabeling, we showed that, in Purkinje cells and hippocampal neurons, SG2NA is confined to the somatodendritic compartment with the highest density in dendritic spines. In cultured hippocampal neurons, SG2NA is also highly concentrated in dendritic spines. By expressing truncated forms of HA-tagged SG2NAbeta, we demonstrated that the coiled-coil domain plays an essential role in the targeting of SG2NA within spines. Furthermore, co-immunoprecipitation experiments indicate that this coiled-coil domain is also crucial for the homo- and hetero-oligomerization of these proteins. Thus, oligomerization of the striatin family proteins is probably an obligatory step for their routing to the dendritic spines, and hetero-oligomerization explains why all these proteins are often co-expressed in the neurons of the rat brain and spinal cord.  相似文献   

5.
Sensory ganglia taken from quail embryos at E4 to E7 were back-transplanted into the vagal neural crest migration pathway (i.e., at the level of somites 1 to 6) of 8- to 10-somite stage chick embryos. Three types of sensory ganglia were used: (i) proximal ganglia of cranial sensory nerves IX and X forming the jugular-superior ganglionic complex, whose neurons and nonneuronal cells both arise from the neural crest; (ii) distal ganglia of the same nerves, i.e., the petrosal and nodose ganglia in which the neurons originate from epibranchial placodes and the nonneuronal cells from the neural crest; (iii) dorsal root ganglia taken in the truncal region between the fore- and hindlimb levels. The question raised was whether cells from the graft would be able to yield the neural crest derivatives normally arising from the hindbrain and vagal crest, such as carotid body type I and II cells, enteric ganglia, Schwann cells located along the local nerves, and the nonneuronal contingent of cells in the host nodose ganglion. All the grafted cephalic ganglia provided the host with the complete array of these cell types. In contrast, grafted dorsal root ganglion cells gave rise only to carotid body type I and II cells, to the nonneuronal cells of the nodose ganglion, and to Schwann cells; the ganglion-derived cells did not invade the gut and therefore failed to contribute to the host's enteric neuronal system. Coculture on the chorioallantoic membrane of aneural chick gut directly associated with quail sensory ganglia essentially reinforced these results. These data demonstrate that the capacity of peripheral ganglia to provide enteric plexuses varies according to the level of the neuraxis from which they originate.  相似文献   

6.
Protein phosphatase 2A (PP2A) is a multifunctional serine/threonine phosphatase that is critical to many cellular processes including development, neuronal signaling, cell cycle regulation, and viral transformation. PP2A has been implicated in Ca(2+)-dependent signaling pathways, but how PP2A is targeted to these pathways is not understood. We have identified two calmodulin (CaM)-binding proteins that form stable complexes with the PP2A A/C heterodimer and may represent a novel family of PP2A B-type subunits. These two proteins, striatin and S/G(2) nuclear autoantigen (SG2NA), are highly related WD40 repeat proteins of previously unknown function and distinct subcellular localizations. Striatin has been reported to associate with the post-synaptic densities of neurons, whereas SG2NA has been reported to be a nuclear protein expressed primarily during the S and G(2) phases of the cell cycle. We show that SG2NA, like striatin, binds to CaM in a Ca(2+)-dependent manner. In addition to CaM and PP2A, several unidentified proteins stably associate with the striatin-PP2A and SG2NA-PP2A complexes. Thus, one mechanism of targeting and organizing PP2A with components of Ca(2+)-dependent signaling pathways may be through the molecular scaffolding proteins striatin and SG2NA.  相似文献   

7.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel vasoactive intestinal peptide (VIP)-like peptide, which is present in neuronal elements of several peripheral organs, and thus a putative neurotransmitter/modulator. In the present study, the expression of PACAP in two parasympathetic ganglia (otic, sphenopalatine) and one mixed parasympathetic/sensory ganglion (jugular-nodose) in rat was characterized by use of in situ hybridization and immunocytochemistry and compared to that of VIP and calcitonin gene-related peptide (CGRP). PACAP and VIP were expressed in virtually all nerve cell bodies in the otic and sphenopalatine ganglia; PACAP and VIP were also expressed in subpopulations of nerve cell bodies in the jugular-nodose ganglion. CGRP was expressed in numerous nerve cell bodies in the jugular-nodose ganglion and in a few, scattered, nerve cell bodies in the sphenopalatine ganglion. In the otic and sphenopalatine ganglia, PACAP- and VIP-like immunoreactivities were frequently co-localized; in the jugular-nodose ganglion, PACAP-like immunoreactivity was frequently co-localized with CGRP-like immunoreactivity in presumably sensory neurons and to a lesser extent with VIP in parasympathetic neurons. Thus, PACAP is synthesized and stored in autonomic parasympathetic neurons as well as in vagal sensory neurons, which provides an anatomical basis for the diverse effects of PACAP previously described.  相似文献   

8.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

9.
Striatin and S/G(2) nuclear autoantigen (SG2NA) are related proteins that contain membrane binding domains and associate with protein phosphatase 2A (PP2A) and many additional proteins that may be PP2A regulatory targets. Here we identify a major member of these complexes as class II mMOB1, a mammalian homolog of the yeast protein MOB1, and show that its phosphorylation appears to be regulated by PP2A. Yeast MOB1 is critical for cytoskeletal reorganization during cytokinesis and exit from mitosis. We show that mMOB1 associated with PP2A is not detectably phosphorylated in asynchronous murine fibroblasts. However, treatment with the PP2A inhibitor okadaic acid induces phosphorylation of PP2A-associated mMOB1 on serine. Moreover, specific inhibition of PP2A also results in hyperphosphorylation of striatin, SG2NA, and three unidentified proteins, suggesting that these proteins may also be regulated by PP2A. Indirect immunofluorescence produced highly similar staining patterns for striatin, SG2NA, and mMOB1, with the highest concentrations for each protein adjacent to the nuclear membrane. We also present evidence that these complexes may interact with each other. These data are consistent with a model in which PP2A may regulate mMOB1, striatin, and SG2NA to modulate changes in the cytoskeleton or interactions between the cytoskeleton and membrane structures.  相似文献   

10.
Members of the striatin family are scaffolding proteins involved in numerous signaling pathways principally in neurons. Zinedin is the only member of this protein family for which the brain distribution has not been determined so far. Here, we have validated a specific antibody against zinedin and used this tool to study the localization of zinedin at cellular and sub-cellular levels in the rat brain. Zinedin is primarily expressed in neurons of the hippocampus, cerebral cortex, olfactory bulb and caudate putamen nucleus. Like other members of the striatin family, zinedin displays a polarized distribution in the somato-dendritic compartment of neurons and is enriched in dendritic spines. The rostral expression of zinedin as well as its compartmented distribution in dendritic spines may have important implications not only for zinedin function but also in the physiology of dendritic spines of a particular subset of neurons.  相似文献   

11.
Contrary to traditional teaching, mammalian primary sensory neurons may express catecholaminergic (CA) neurotransmitter characteristics in vivo. Sensory neurons in the nodose, petrosal, and dorsal root ganglia of rats express tyrosine hydroxylase, the rate-limiting enzyme in CA biosynthesis, and formaldehyde-induced CA fluorescence, in addition to other CA traits. These findings suggest that catecholamines may function as sensory as well as autonomic motor (e.g., sympathetic) neurotransmitters. Most CA cells in the petrosal ganglion project peripherally to the carotid body, which indicates a striking correlation between CA expression in sensory neurons and the pattern of sensory innervation. Inasmuch as petrosal ganglion afferents make synaptic contact with chemoreceptive glomus cells in the carotid body, it is likely that CA sensory neurons in the ganglion transmit chemoreceptor information to the brain stem. Comparison with sympathetic neurons indicates that some mechanisms of CA regulation, such as altered activity of tyrosine hydroxylase in response to depolarizing stimuli, are shared among sensory and traditional CA populations. Other mechanisms, including trophic regulation, appear to be distinct. Therefore, despite expression of common phenotypic traits, CA expression in diverse populations of peripheral neurons is not necessarily associated with a common repertoire of regulatory mechanisms.  相似文献   

12.
Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

13.
14.
The location within the prothoracic ganglion of neurone somata with axons in identified peripheral nerves is examined by the cobalt iontophoresis technique. Axons are filled with cobalt by diffusion through their cut ends and the cobalt is then precipitated as the black sulphide inside the neurone. It is assumed that neurones with axons in peripheral nerves and somata in central ganglia are either motor or neuro-secretory. Fifteen nerves are examined and maps of the location of somata with axons in each nerve are presented. The axon distribution in peripheral nerves of three common inhibitory neurones is described. Dendritic morphology of one common inhibitory neurone and two coxal depressor motoneurones is illustrated. It is proposed that some individual neurones can be reliably identified from their soma dimensions and location within the ganglion. The number of motoneurones with somata in the prothoracic ganglion and their homology with cells in the other thoracic ganglia are discussed.  相似文献   

15.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

16.
Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats.  相似文献   

17.
The marked similarity between the primary structures of human, other vertebrate, and the invertebrate tunicate PACAP suggests that PACAP is one of the most highly conserved peptides during the phylogeny of the metazoans. We investigated the distribution of PACAP-like immunoreactivity in the nervous system of three oligochaete (Annelida) worms with immunocytochemistry. The distribution pattern of immunoreactivity was similar in all three species (Lumbricus terrestris, Eisenia fetida, and Lumbricus polyphemus). The cerebral ganglion contains numerous immunoreactive cells and fibers. A few cells and fibers were found in the medial and lateral parts of the subesophageal and ventral cord ganglia. In the peripheral nervous system, immunoreactivity was found in the enteric nervous system, in epidermal sensory cells, and in the clitellum.  相似文献   

18.
To identify and analyse precursor cells of neuronal and glial cell lineages during the early development of the chick peripheral nervous system, monoclonal antibodies were raised against a population of undifferentiated cells of E6 dorsal root ganglia (DRG). Non-neuronal cells of E6 DRG express surface antigens that are recognized by four monoclonal antibodies, G1, G2, GLI 1 and GLI 2. The proportion of non-neuronal cells in DRG that express the GLI 1 antigen is very high during ganglion formation (80% at E4) and decreases during later development (15% at E14). GLI 2 antigen is expressed only on a minority of the cells at E6 and increases with development. The G1 and G2 antigens are expressed on about 60-80% of the cells between E6 and E14. All cells that express the established glia marker O4 are also positive for the new antigens. In addition, it was demonstrated that GLI 1-positive cells from early DRG, which are devoid of O4 antigen, could be induced in vitro to express the O4 antigen. Thus, the antigen-positive cells are considered as glial cells or glial precursor cells. Surprisingly, the antigen expression by satellite cells of peripheral ganglia is dependent on the type of ganglion: antigens G1, G2 and GLI 1 were not detectable on glial cells of lumbosacral sympathetic ganglia and GLI 2 was expressed only by a small subpopulation. These results demonstrate an early immunological difference between satellite cells of sensory DRG and sympathetic ganglia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Summary The osphradium of Planorbarius consists of a blindly-ending ciliated canal, formed by an infolding of the mantle epithelium, and a basal ganglion of nerve cells which is comparable in complexity with ganglia of the central nervous system. The distribution of cell types in the osphradial epithelium is specialised so that three regions can be recognised; the ciliated, the secretory and the sensory regions. The basal sensory region of the canal epithelium consists of ciliated cells and is innervated by sensory neurones of the osphradial ganglion. The middle secretory region contains mainly of mucus-secreting cells and the epithelium adjacent to the osphradial aperture of ciliated cells and secretory cells of a second type. The sensory neurones of the osphradial ganglion are bipolar or of a modified monopolar type. Other monopolar neurones, similar to those common in the central nervous system are of non-sensory function. The osphradium of Paludina, although of typical prosobranch form, possesses ciliated pits similar to the single canal of Planorbarius, which may indicate a shared modality of receptor function. A definite function cannot be ascribed to the pulmonate osphradium based on morphological evidence alone.  相似文献   

20.
The distribution of cholecystokinin-like immunoreactivity was studied in the central nervous system of the heteropteran insect Triatoma infestans using high-sensitivity immunocytochemistry. In the protocerebrum, CCK-IR somata were observed in the anteromedial, anterolateral and posterior cell-body layers. The neuropils displayed different densities of immunoreactive neurites. Few immunoreactive somata were found in the optic lobe in both the medial and lateral soma rinds, as well as in the proximal optic lobe. Immunoreactive fibers were present in the medulla and lobula neuropils. The sensory deutocerebrum contained a higher number of immunopositive perikarya than the antennal mechanosensory and motor center. The antennal lobe glomeruli displayed a moderate density of immunoreactive fibers. With regard to the subesophageal ganglion, numerous CCK-IR somata were found close to the root of the mandibular nerve; others were present in the soma rind of the remaining neuromeres. CCK-IR perikarya were present in both thoracic ganglia, with the abdominal neuromeres containing the highest number of positive somata. The neuropils of both ganglia showed moderate densities of immunopositive processes. The distribution of CCK-LI in somata and neuropils of central nervous system of T. infestans is widespread suggesting that a CCK-like peptide may act mainly as a neuromodulator in the integration of information from distinct sensory receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号