首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-activated protein for secretion (CAPS) is proposed to play an essential role in Ca2+-regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Here we report the cloning, mutation, and characterization of the Drosophila ortholog (dCAPS). Null dCAPS mutants display locomotory deficits and complete embryonic lethality. The mutant NMJ reveals a 50% loss in evoked glutamatergic transmission, and an accumulation of synaptic vesicles at active zones. Importantly, dCAPS mutants display a highly specific 3-fold accumulation of dense-core vesicles in synaptic terminals, which was not observed in mutants that completely arrest synaptic vesicle exocytosis. Targeted transgenic CAPS expression in identified motoneurons fails to rescue dCAPS neurotransmission defects, demonstrating a cell nonautonomous role in synaptic vesicle fusion. We conclude that dCAPS is required for dense-core vesicle release and that a dCAPS-dependent mechanism modulates synaptic vesicle release at glutamatergic synapses.  相似文献   

2.
Malat1 is an abundant long, noncoding RNA that localizes to nuclear bodies known as nuclear speckles, which contain a distinct set of pre-mRNA processing factors. Previous studies in cell culture have demonstrated that Malat1 interacts with pre-mRNA splicing factors, including the serine- and arginine-rich (SR) family of proteins, and regulates a variety of biological processes, including cancer cell migration, synapse formation, cell cycle progression, and responses to serum stimulation. To address the physiological function of Malat1 in a living organism, we generated Malat1-knockout (KO) mice using homologous recombination. Unexpectedly, the Malat1-KO mice were viable and fertile, showing no apparent phenotypes. Nuclear speckle markers were also correctly localized in cells that lacked Malat1. However, the cellular levels of another long, noncoding RNA--Neat1--which is an architectural component of nuclear bodies known as paraspeckles, were down-regulated in a particular set of tissues and cells lacking Malat1. We propose that Malat1 is not essential in living mice maintained under normal laboratory conditions and that its function becomes apparent only in specific cell types and under particular conditions.  相似文献   

3.
Å mechanism for rupture of a separating bilayer, resulting from vesicle monolayer fusion is investigated theoretically. The stalk mechanism of monolayer fusion, assuming the formation and expansion of a stalk between two interacting membranes is considered. The stalk evolution leads to formation of a separating bilayer and mechanical tension appearance in the system. This tension results in rupture of the separating bilayer and hydrophilic pore formation. Competition between the mechanical tension and hydrophilic pore energy defines the criteria of contacting bilayer rupture. The tension increases with an increase of the absolute value of the negative spontaneous curvature of the outer membrane monolayer, K s o . The pore edge energy decreases with an increase of the positive spontaneous curvature of the inner membrane monolayer, K s i . The relations of spontaneous curvatures of outer and inner monolayers, leading to separating bilayer rupture, is calculated. It is demonstrated that his process is possible, provided spontaneous curvatures of membrane monolayers have opposite signs: K s o <0, K s i <0. Experimental data concerning the fusion process are analysed.  相似文献   

4.
Centrioles and basal bodies are cylinders composed of nine triplet microtubule blades that play essential roles in the centrosome and in flagellar assembly. Chlamydomonas cells with the bld2-1 mutation fail to assemble doublet and triplet microtubules and have defects in cleavage furrow placement and meiosis. Using positional cloning, we have walked 720 kb and identified a 13.2-kb fragment that contains epsilon-tubulin and rescues the Bld2 defects. The bld2-1 allele has a premature stop codon and intragenic revertants replace the stop codon with glutamine, glutamate, or lysine. Polyclonal antibodies to epsilon-tubulin show peripheral labeling of full-length basal bodies and centrioles. Thus, epsilon-tubulin is encoded by the BLD2 allele and epsilon-tubulin plays a role in basal body/centriole morphogenesis.  相似文献   

5.
6.
Characterization of the mechanism of endocytic vesicle fusion in vitro   总被引:8,自引:0,他引:8  
A cell-free assay to monitor receptor-mediated endocytic processes has been developed that uses biotinylated transferrin and avidin-linked beta-galactosidase as receptor-associated and fluid-phase probes, respectively (Wessling-Resnick, M., and Braell, W. A. (1990) J. Biol. Chem. 265, 690-699). The fusion of vesicles from heterologous sources can be detected in this assay: endocytic vesicles from K562 cells (a human cell line) will fuse with vesicles from Chinese hamster ovary cells. Fusion between endocytic vesicles is inhibited upon treatment with N-ethylmaleimide but can be restored by the addition of untreated cytosol from either cell type. The in vitro fusion reaction is also inhibited by the nonhydrolyzable nucleotide analogs guanosine 5'-(3-thiotriphosphate) (GTP gamma S) and adenosine 5'-(3-thiotriphosphate) (ATP gamma S). Other nonhydrolyzable guanine nucleotides are found to inhibit the in vitro reaction in the following order of potency: GTP gamma S greater than 5'-guanylyl imidodiphosphate (GTP-PNP) greater than alpha,beta-methylene GTP (GTP-PCP). The inhibitory effects of the nonhydrolyzable analogs of GTP and ATP are not additive. Moreover, excess GTP relieves the inhibition by GTP gamma S more than it relieves the inhibition by ATP gamma S, while excess ATP preferentially alleviates ATP gamma S (not GTP gamma S) inhibition. These properties suggest that the two nucleotides exert their effects at distinct points in the fusion process. Although micromolar levels of excess Ca2+ also inhibit vesicle fusion, the inhibition exerted by GTP gamma S appears to proceed via a pathway independent of the divalent cation. The GTP gamma S-sensitive step in endocytic vesicle fusion is found to occur at a mechanistic stage prior to and distinct from the N-ethylmaleimide-sensitive step of the reaction. This situation permits the accumulation of a membrane vesicle intermediate in the presence of GTP gamma S; subsequent incubation of these vesicles with cytosol and GTP restores their fusion competence. Characteristics of in vitro endocytic vesicle fusion suggest that similarities exist with steps of the fusion mechanism involved with membrane traffic events of the secretory pathway.  相似文献   

7.
Cofilin is an essential component of the yeast cortical cytoskeleton   总被引:13,自引:17,他引:13       下载免费PDF全文
We have biochemically identified the Saccharomyces cerevisiae homologue of the mammalian actin binding protein cofilin. Cofilin and related proteins isolated from diverse organisms are low molecular weight proteins (15-20 kD) that possess several activities in vitro. All bind to monomeric actin and sever filaments, and some can stably associate with filaments. In this study, we demonstrate using viscosity, sedimentation, and actin assembly rate assays that yeast cofilin (16 kD) possesses all of these properties. Cloning and sequencing of the S. cerevisiae cofilin gene (COF1) revealed that yeast cofilin is 41% identical in amino acid sequence to mammalian cofilin and, surprisingly, has homology to a protein outside the family of cofilin- like proteins. The NH2-terminal 16kD of Abp1p, a 65-kD yeast protein identified by its ability to bind to actin filaments, is 23% identical to yeast cofilin. Immunofluorescence experiments showed that, like Abp1p, cofilin is associated with the membrane actin cytoskeleton. A complete disruption of the COF1 gene was created in diploid cells. Sporulation and tetrad analysis revealed that yeast cofilin has an essential function in vivo. Although Abp1p shares sequence similarity with cofilin and has the same distribution as cofilin in the cell, multiple copies of the ABP1 gene cannot compensate for the loss of cofilin. Thus, cofilin and Abp1p are structurally related but functionally distinct components of the yeast membrane cytoskeleton.  相似文献   

8.
Formation of a constriction and tissue separation between parent and young polyp is a hallmark of the Hydra budding process and controlled by fibroblast growth factor receptor (FGFR) signaling. Appearance of a cluster of cells positive for double phosphorylated ERK (dpERK) at the late separation site indicated that the RAS/MEK/ERK pathway might be a downstream target of the Hydra Kringelchen FGFR. In fact, inhibition of ERK phosphorylation by the MEK inhibitor U0126 reversibly delayed bud detachment and prevented formation of the dpERK-positive cell cluster indicating de novo-phosphorylation of ERK at the late bud base. In functional studies, a dominant-negative Kringelchen FGFR prevented bud detachment as well as appearance of the dpERK-positive cell cluster. Ectopic expression of full length Kringelchen, on the other hand, induced a localized rearrangement of the actin cytoskeleton at sites of constriction, localized ERK-phosphorylation and autotomy of the body column. Our data suggest a model in which (i) the Hydra FGFR targets, via an unknown pathway, the actin cytoskeleton to induce a constriction and (ii) FGFR activates MEK/ERK signaling at the late separation site to allow tissue separation.  相似文献   

9.
Fos is an essential component of the mammalian UV response.   总被引:21,自引:5,他引:21       下载免费PDF全文
  相似文献   

10.
The vaccinia virus H2R gene (VACWR 100) is conserved in all sequenced members of the poxvirus family and encodes a protein with a predicted transmembrane domain and four invariant cysteines. A recombinant vaccinia virus, in which expression of the H2 protein is stringently regulated, was unable to replicate without inducer. However, under nonpermissive conditions, all stages of virus morphogenesis appeared normal and extracellular virions were detected at the tips of actin tails. Nevertheless, virus did not spread to neighboring cells nor did syncytia form after low-pH treatment. Purified -H2 and +H2 virions from cells infected in the absence or presence of inducer, respectively, were indistinguishable in microscopic appearance and contained the same complement of major proteins, though only +H2 virions were infectious. The -H2 virions bound to cells, but their cores did not penetrate into the cytoplasm. In addition, exogenously added -H2 virions were unable to mediate the formation of syncytia after low-pH treatment. In contrast, virions lacking the A27 (p14) protein, which was previously considered to have an essential role in fusion, penetrated cells and induced extensive syncytia. The properties of H2, however, are very similar to those recently reported for the A28 protein. Moreover, coimmunoprecipitation experiments indicated an interaction between H2 and A28. Therefore, H2 and A28 are the only proteins presently known to be specifically required for vaccinia virus entry and are likely components of a fusion complex.  相似文献   

11.
Despite being a major component of the pseudorabies virus tegument, VP22 is not required for PRV replication, virulence, or neuroinvasion (T. del Rio, H. C. Werner, and L. W. Enquist, J. Virol. 76:774-782, 2002). In the absence of VP22, tegument assembly compensates in a limited fashion with increased incorporation of cellular actin. Infection of epithelial cell lines expressing fluorescent actin fusion proteins resulted in the incorporation of filamentous and nonfilamentous actin into individual virions that were predominately light, noninfectious particles. We conclude that cellular actin is incorporated in the tegument of wild-type virions and is part of a compensation mechanism for VP22-null virions.  相似文献   

12.
Mop3 is an essential component of the master circadian pacemaker in mammals   总被引:33,自引:0,他引:33  
Circadian oscillations in mammalian physiology and behavior are regulated by an endogenous biological clock. Here we show that loss of the PAS protein MOP3 (also known as BMAL1) in mice results in immediate and complete loss of circadian rhythmicity in constant darkness. Additionally, locomotor activity in light-dark (LD) cycles is impaired and activity levels are reduced in Mop3-/- mice. Analysis of Period gene expression in the suprachiasmatic nucleus (SCN) indicates that these behavioral phenotypes arise from loss of circadian function at the molecular level. These results provide genetic evidence that MOP3 is the bona fide heterodimeric partner of mCLOCK. Furthermore, these data demonstrate that MOP3 is a nonredundant and essential component of the circadian pacemaker in mammals.  相似文献   

13.
The cardiosphere (CS) is composed of a heterogeneous population of cells, including CD45+ cells that are bone marrow (BM)-derived. However, whether the CD45+ cells are an essential cell component in CS formation is unknown. The current study was undertaken to address this question. Cardiospheres (CSs) were harvested from 1-week post-myocardial infarction (MI) or non-MI hearts of C57BL/6 J mice. The process of CS formation was observed by timelapse photography. To analyze the role of BM-derived CD45+ cells in CS formation, CD45+ cells were depleted from populations of CS-forming cells by immunomagnetic beads. We recorded the number of CSs formed in culture from the same amount (105) of intact CS-forming cells, from CD45+-cell-depleted CS-forming cells and from CD45+ cells alone (n=6–9/cell type). CS-forming cells selectively aggregated together to form CSs by 35 h after plating. The depletion of CD45+ cells from CS-forming cells actually increased the formation of CSs (67±10 CSs/105 cells) compared with non-depleted CS-forming cells (51±6 CSs/105 cells, P<0.0001). Purified CD45+ cells from CS-forming cells did not form CSs in culture. Thus, BM-derived CD45+ cells including BM progenitors are neither necessary nor sufficient for CS formation.  相似文献   

14.
Actin polymerization is essential for pollen tube growth   总被引:25,自引:0,他引:25       下载免费PDF全文
Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt to answer this question. We found that a approximately 50% increase in the total profilin pool was necessary to half-maximally inhibit pollen tube growth, whereas a approximately 100% increase was necessary for half-maximal inhibition of cytoplasmic streaming. DNAse I showed a similar inhibitory activity but with a threefold more pronounced effect on growth than streaming. Latrunculin B, at only 1--4 nM in the growth medium, has a similar proportion of inhibition of growth over streaming to that of profilin. The fact that tip growth is more sensitive than streaming to the inhibitory substances and that there is no correlation between streaming and growth rates suggests that tip growth requires actin assembly in a process independent of cytoplasmic streaming.  相似文献   

15.
An isolate of Fusarium solani, NRRL 18883, produces the natural phytotoxin 2,5-anhydro-D-glucitol (AhG). This fungal metabolite inhibited the growth of roots (150 of 1.6 mM), but it did not have any in vitro inhibitory activity. The mechanism of action of AhG requires enzymatic phosphorylation by plant glycolytic kinases to yield AhG-1,6-bisphosphate (AhG-1,6-bisP), an inhibitor of Fru-1,6-bisP aldolase. AhG-1,6-bisP had an I50 value of 570 microM on aldolase activity, and it competed with Fru-1,6-bisP for the catalytic site on the enzyme, with a Ki value of 103 microm. The hydroxyl group on the anomeric carbon of Fru-1,6-bisP is required for the formation of an essential covalent bond to zeta amino functionality of lysine 225. The absence of this hydroxyl group on AhG-1,6-bisP prevents the normal catalytic function of aldolase. Nonetheless, modeling of the binding of AhG-1,6-bisP to the catalytic pocket shows that the inhibitor interacts with the amino acid residues of the binding site in a manner similar to that of Fru-1,6-bisP. The ability of F. solani to produce a fructose analog that is bioactivated by enzymes of the host plant in order to inhibit a major metabolic pathway illustrates the intricate biochemical processes involved in plant-pathogen interactions.  相似文献   

16.
17.
In vitro vesicle fusion assays that monitor lipid mixing between t-SNARE and v-SNARE vesicles in bulk solution exhibit remarkably slow fusion on the nonphysiological timescale of tens of minutes to several hours. Here, single-vesicle, fluorescence resonance energy transfer-based assays cleanly separate docking and fusion steps for individual vesicle pairs containing full-length SNAREs. Docking is extremely inefficient and is the rate-limiting step. Of importance, the docking and fusion kinetics are comparable in the two assays (one with v-SNARE vesicles tethered to a surface and the other with v-SNARE vesicles free in solution). Addition of the VC peptide synaptobrevin-2 (syb(57–92)) increases the docking efficiency by a factor of ∼30, but docking remains rate-limiting. In the presence of VC peptide, the fusion step occurs on a timescale of ∼10 s. In previous experiments involving bulk fusion assays in which the addition of synaptotagmin/Ca2+, Munc-18, or complexin accelerated the observed lipid-mixing rate, the enhancement may have arisen from the docking step rather than the fusion step.  相似文献   

18.
Vegetative hyphal fusion (VHF) is a ubiquitous phenomenon in filamentous fungi whose biological role is poorly understood. In Neurospora crassa, the mitogen-activated protein kinase (MAPK) Mak-2 and the WW domain protein So are required for efficient VHF. A MAPK orthologous to Mak-2, Fmk1, was previously shown to be essential for root penetration and pathogenicity of the vascular wilt fungus Fusarium oxysporum. Here we took a genetic approach to test two hypotheses, that (i) VHF and plant infection have signaling mechanisms in common and (ii) VHF is required for efficient plant infection. F. oxysporum mutants lacking either Fmk1 or Fso1, an orthologue of N. crassa So, were impaired in the fusion of vegetative hyphae and microconidial germ tubes. Δfmk1 Δfso1 double mutants exhibited a more severe fusion phenotype than either single mutant, indicating that the two components function in distinct pathways. Both Δfso1 and Δfmk1 strains were impaired in the formation of hyphal networks on the root surface, a process associated with extensive VHF. The Δfso1 mutants exhibited slightly reduced virulence in tomato fruit infection assays but, in contrast to Δfmk1 strains, were still able to perform functions associated with invasive growth, such as secretion of pectinolytic enzymes or penetration of cellophane sheets, and to infect tomato plants. Thus, although VHF per se is not essential for plant infection, both processes have some signaling components in common, suggesting an evolutionary relationship between the underlying cellular mechanisms.  相似文献   

19.
Glycosylphosphatidylinositol (GPI) is widely used by eukaryotic cell surface proteins for membrane attachment. De novo synthesized GPI precursors are attached to proteins post-translationally by the enzyme complex, GPI transamidase. TbGPI16, a component of the trypanosome transamidase, shares similarity with human PIG-T. Here, we show that TbGPI16 is the orthologue of PIG-T and an essential component of GPI transamidase by creating a TbGPI16 knockout. TbGPI16 forms a disulfide-linked complex with TbGPI8. A cysteine to serine mutant of TbGPI16 was unable to fully restore the surface expression of GPI-anchored proteins upon transfection into the knockout cells, indicating that its disulfide linkage with TbGPI8 is important for the full transamidase activity.  相似文献   

20.
Leaf senescence is the final stage of leaf development in which the nutrients invested in the leaf are remobilized to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, exogenous application of cytokinins or an increase of the endogenous concentration delays senescence and causes nutrient mobilization. The finding that extracellular invertase and hexose transporters, as the functionally linked enzymes of an apolasmic phloem unloading pathway, are coinduced by cytokinins suggested that delay of senescence is mediated via an effect on source-sink relations. This hypothesis was further substantiated in this study by the finding that delay of senescence in transgenic tobacco (Nicotiana tabacum) plants with autoregulated cytokinin production correlates with an elevated extracellular invertase activity. The finding that the expression of an extracellular invertase under control of the senescence-induced SAG12 promoter results in a delay of senescence demonstrates that effect of cytokinins may be substituted by these metabolic enzymes. The observation that an increase in extracellular invertase is sufficient to delay leaf senescence was further verified by a complementing functional approach. Localized induction of an extracellular invertase under control of a chemically inducible promoter resulted in ectopic delay of senescence, resembling the naturally occurring green islands in autumn leaves. To establish a causal relationship between cytokinins and extracellular invertase for the delay of senescence, transgenic plants were generated that allowed inhibition of extracellular invertase in the presence of cytokinins. For this purpose, an invertase inhibitor was expressed under control of a cytokinin-inducible promoter. It has been shown that senescence is not any more delayed by cytokinin when the expression of the invertase inhibitor is elevated. This finding demonstrates that extracellular invertase is required for the delay of senescence by cytokinins and that it is a key element of the underlying molecular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号