首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The atrium of the heart has been demonstrated to represent the major site of synthesis of atrial natriuretic peptide (ANP), a potent natriuretic, diuretic and vasoactive hormone. Our recent studies revealed ANP-like material outside the heart, namely, in lymphoid follicles of the intestine and in the thymus, and now we report data demonstrating the thymus as a site of synthesis for ANP. The experimental evidence is as follows: firstly, the immunoreactive material detected corresponds chromatographically with the precursor of ANP. Secondly, the thymus contains mRNA for ANP. Thirdly, immunohistochemistry locates ANP-like material to cortical thymocytes with particularly dense staining in the subcapsular areas of the thymus. Interestingly, both ANP-like material and the mRNA coding for ANP were expressed to a larger extent in newborn rats as compared to adult animals, suggesting that ANP may be involved in the development and/or function of T-cells.  相似文献   

3.
In this study on the excretory apparatus of the Bufo bufo larvae, the ultrastructural features and the atrial natriuretic peptide (ANP)-system were examined using cytochemical and immunocytochemical methods. The early embryonic kidney, the pronephros, is replaced by a later stage, the mesonephros. The pronephros degenerates at the time of metamorphosis and the mesonephros becomes the functional kidney in the adult. Both these organs are targets for ANP, demonstrated by the presence of the specific receptors, indirectly highlighted by the cytochemical localization of the guanylate cyclase in the presence of exogenous atrial natriuretic peptide. This study concluded that the mesonephros produces ANP and thus clusters of cells containing ANP-like granules, positive to the anti-α ANP immunolocalization, were present along the mesonephric proximal tubule. The atrial natriuretic peptide system carries out an important osmoregulatory role in the excretory apparatus.  相似文献   

4.
Atrial natriuretic peptide (ANP) has previously been localized in areas of mammalian brain associated with olfaction, cardiovascular function, and fluid/electrolyte homeostasis. Despite the presence of several types of natriuretic peptide receptors in mammalian cerebellum, neither intrinsic nor extrinsic sources of the natriuretic peptides have been described. In this report we describe the immunohistochemical localization of both intrinsic and extrinsic sources for ANP in human cerebellum. ANP-like immunoreactivity (ANP-LIR) was observed in climbing fibers in the cerebellar molecular layer that probably originated from isolated immunopositive neurons of the inferior olivary complex. Intrinsic sources of ANP-LIR included small subpopulations of protoplasmic and fibrous astrocytes and Bergmann glia, as well as Golgi and Lugaro neurons of the granule cell layer. These results suggest that, in addition to its presumptive roles in local vasoregulation, ANP may serve as a modulator of the activity of Purkinje neurons.  相似文献   

5.
The Na(+)-regulating and vasoactive peptide hormone atrial natriuretic peptide (ANP) has been localized in cultured glial cells from neonatal rat brain but has not been reported in situ in adult brain. In the present study, immunohistochemical localization of ANP in astrocytes of adult canine brain was obtained using an antibody against rat ANF IV, a 25-amino acid fragment identical to low molecular weight brain ANP. ANP-like immunoreactivity was localized in widely dispersed astroglia throughout the canine brain, including Types I and II, in addition to some astrocytes of the glia limitans (GL).  相似文献   

6.
7.
Atrial natriuretic peptide hormonal system in plants.   总被引:1,自引:0,他引:1  
To determine if atrial natriuretic peptides are present in plants as well as animals, where they are important for water and sodium metabolism, the leaves and stems of the Florida Beauty (Dracena godseffiana) were examined. The N-terminus consisting of amino acids (a.a.) 1-98 (i.e., pro ANF 1-98), the mid portion of the N-terminus (a.a. 31-67; pro ANF 31-67), and C-terminus (a.a. 99-126; ANF) of the 126 a.a. atrial natriuretic factor (ANF) prohormone were all present in the leaves and stems of this plant. The concentrations of pro ANF 1-98, pro ANF 31-67 and ANF-like peptides of 120 +/- 20, 123 +/- 21, and 129 +/- 20 ng/g of plant tissue in leaves and 109 +/- 20, 96 +/- 21, and 124 +/- 18 ng/g of tissue, respectively, in the stems were lower (P less than 0.05) than their concentrations in rat (Rattus norvegicus) heart atria of 196 +/- 40, 192 +/- 28, and 189 +/- 15 ng/g of tissue respectively, but higher (P less than 0.001) than their respective concentrations of 4.3 +/- 1.4, 4.1 +/- 1.2, and 3.9 +/- 1 ng/g of rat heart ventricular tissue. We conclude that the atrial natriuretic peptide-like hormonal system is present in the plant kingdom as well as in the animal kingdom.  相似文献   

8.
The presence of ANP in rat peritoneal mast cells   总被引:5,自引:0,他引:5  
Atrial natriuretic peptide (ANP) is an important component of the natriuretic peptide system. A great role in many regulatory systems is played by mast cells. Meanwhile involvement of these cells in ANP activity is poorly studied. In this work, we have shown the presence of ANP in rat peritoneal mast cells. Pure fraction of mast cells was obtained by separation of rat peritoneal cells on a Percoll density gradient. By Westem blotting, two ANP-immunoreactive proteins of molecular masses of 2.5 kDa and 16.9 kDa were detected in lysates from these mast cells. Electron microscope immunogold labeling has revealed the presence of ANP-immunoreactive material in storage, secreting and released granules of mast cells. Our findings indicate the rat peritoneal mast cells to contain both ANP prohormone and ANP. These both peptides are located in mast cell secretory granules and released by mechanism of degranulation. It is discussed that many mast cell functions might be due to production of natriuretic peptides by these cells.  相似文献   

9.
Immunoreactive atrial natriuretic peptide in the guinea pig spleen   总被引:1,自引:0,他引:1  
The presence of immunoreactive ANP precursor-like material in the guinea pig spleen is suggested. This is based on the following experimental evidence: An acidic extract of guinea pig spleen analysed by Sephadex G-50 gelfiltration contained 4.6 pmol/g wet tissue immunoreactive atrial natriuretic peptide (IR-ANP), coeluting with the 15 kDa synthetic ANP (2-126). Gelfiltrated IR-ANP material was further submitted to reverse phase high performance liquid chromatography and monitored by radioimmunoassay employing two antisera. One antiserum recognizes the C-terminal of ANP (1-126), the second is directed against the N-terminal sequence. Both antisera revealed material eluting with synthetic ANP (2-126). Furthermore, immunohistochemical analysis suggests this ANP-like material to be localized mainly at the periphery of the white pulp of the spleen. These findings link ANP with the immune system.  相似文献   

10.
Vesely DL 《IUBMB life》2002,53(3):153-159
Atrial natriuretic peptides consist of a family of peptide hormones that are synthesized by three separate genes and then stored as three different prohormones (i.e., 126-amino acid [a.a.]) atrial natriuretic peptide (ANP), 108-a.a. brain natriuretic peptide (BNP), and 126-aa. C-natriuretic peptide (CNP) prohormones. The gene encoding for the synthesis of the atrial natriuretic peptide prohormone (proANP) consists of three exons and two introns. Exon 1 encodes the signal peptide and the first 16 aa. of the ANP prohormone. These 16 a.a. form the N-terminus of a peptide hormone named long-acting natriuretic hormone (LANH). A valine-to-methionine substitution in LANH results in a 2-fold increased incidence of strokes in humans. Exon 2 of the proANP gene encodes for three peptide hormones, i.e., vessel dilator, kaliuretic hormone, and ANP. Each of the proANP gene products have vasodilatory, diuretic, natriuretic, and/or kaliuretic properties. Stretch, glucocorticoids, thyroid hormone(s), mineralocorticoids, and calcium enhance proANP gene expression. Enhanced proANP gene expression is found in congestive heart failure, hypertension, and cirrhosis with ascites. The proANP gene is present with invertebrates and plants as well as in humans and other vertebrates.  相似文献   

11.
Atrial natriuretic polypeptide (ANP)-like immunoreactivity was found in the rat adrenal gland by using indirect immunofluorescence and peroxidase-antiperoxidase techniques. ANP-like immunostaining was present in most of chromaffin cells with varying degrees of immunoreactivity. The majority of medullary cells displayed very intense immunostaining, and several clusters revealed weaker immunostaining. No staining was found in the adrenal cortex or in the nerve fibers in this organ. In the consecutive sections treated for dopamine-beta-hydroxylase (DBH), apparently all medullary cells had intense immunofluorescence for DBH and its distribution pattern was very similar to that for ANP-like immunoreactivity. While phenylethanolamine N-methyltransferase (PNMT) immunoreactive cells largely corresponded to the intensely stained ANP-like immunoreactive cells, suggesting that adrenaline cells contained a large amount of ANP-like substance, noradrenaline cells contained a smaller amount of this substance than adrenaline cells. Ultrastructural study showed that end-products due to the immunoreaction with the ANP antiserum were primarily associating with chromaffin granules. In addition, the presence of ANP-like immunoreactivity was investigated in several sympathetic ganglia of the rat. No principal ganglion cells were ANP-positive, whereas a few small intensely fluorescent (SIF) cells were ANP-immunoreactive. The present findings suggest that catecholamines coexist with ANP which has a natriuretic and vasodilating effect, in adrenal medullary cells and SIF cells in several rat sympathetic ganglia, but not in principal ganglion cells.  相似文献   

12.
Increased intrarenal atrial natriuretic peptide (ANP) mRNA expression has been reported in several disorders. To further investigate the action of renal ANP, we need to elucidate the exact site of its alteration in diseased kidneys. ANP mRNA and ANP were detected by in situ hybridization and immunohistochemistry in the kidneys from five normal and five diabetic rats. Renal ANP mRNA in eight normal and nine diabetic rats was measured by RT-PCR with Southern blot hybridization. In normal and diabetic rats, the distribution of ANP mRNA and ANP-like peptide was mainly located in proximal, distal, and collecting tubules. However, diabetic rats had significant enhancement of ANP mRNA and ANP-immunoreactive staining in the proximal straight tubules, medullary thick ascending limbs, and medullary collecting ducts. ANP mRNA in the outer and inner medulla of nine diabetic rats increased 5.5-fold and 3.5-fold, but only 1.8-fold in the renal cortex. This preliminary study showed that ANP mRNA and ANP immunoreactivity in proximal straight tubules, medullary thick ascending limb, and medullary collecting ducts apparently increased in diabetic kidneys. These findings imply that ANP synthesis in these nephrons may involve in adaptations of renal function in diabetes.  相似文献   

13.
Previous studies of atrial natriuretic peptide (ANP) have indicated that its release from the heart and from discrete areas of the central nervous system evokes coordinated physiological and behavioral adjustments that mitigate the adverse hypertensive effects of volume overload and/or acute increases in sodium intake. Because the reflex activity initiated by arterial chemoreceptors of the carotid body directly contributes to the integrated regulation of systemic blood pressure, we have investigated the possibility that ANP has a significant role in the chemosensory process as well. Our immunocytochemical studies show that ANP-like immunoreactivity is present in the preneural chemosensitive type I cells in the cat carotid body. Furthermore we found that the biologically active ANP fragment atriopeptin III is a potent inhibitor of carotid sinus nerve activity evoked by hypoxia. Our findings suggest that circulating and/or endogenous ANP may modulate carotid body function as part of a coordinated response to changes in systemic volume and solute balance.  相似文献   

14.
The role of atrial natriuretic peptide in the immune system   总被引:6,自引:0,他引:6  
Vollmar AM 《Peptides》2005,26(6):1086-1094
Atrial natriuretic peptide (ANP) is a hormone predominately produced by the heart atria which regulates the water and salt balance as well as blood pressure homeostasis. Being expressed in various parts of the immune system a link of the peptide to the immune system has been proposed. In fact, this review focus on effects of ANP in the immune system and reports about the role of the peptide in innate immune functions as well as in the adaptive immune response.  相似文献   

15.
Atrial natriuretic peptide (ANP) is a cardiac hormone with natriuretic and diuretic effects. To better define the ANP hormonal system in the nephrotic syndrome, a condition associated with renal sodium retention, we undertook a study of glomerular ANP receptors in rats with puromycin aminonucleoside-induced nephrotic syndrome and in pair-fed controls. Nephrotic rats had significantly decreased serum albumin and total protein and significantly increased serum cholesterol, triglycerides and 24 hour urinary protein excretion. Plasma level of atrial natriuretic peptide was similar in both groups of rats. Competition binding inhibition studies in isolated glomeruli demonstrated one binding site in both groups of rats. The density of ANP binding sites in isolated glomeruli was similar in nephrotic and pair-fed rats while the binding affinity was increased significantly in the nephrotic rats. This is the first study to demonstrate alterations in renal ANP receptors in the nephrotic syndrome. Further studies will be necessary to determine whether alterations in glomerular ANP receptors contribute to renal sodium retention in the nephrotic syndrome.  相似文献   

16.
The natriuretic peptide system of a euryhaline teleost, the Japanese eel (Anguilla japonica), consists of three types of hormones [atrial natriuretic peptide (ANP), ventricular natriuretic peptide (VNP), and C-type natriuretic peptide (CNP)] and four types of receptors [natriuretic peptide receptors (NPR)-A, -B, -C, and -D]. Although ANP is recognized as a volume-regulating hormone that extrudes both Na(+) and water in mammals, ANP more specifically extrudes Na(+) in eels. Accumulating evidence shows that ANP is secreted in response to hypernatremia and acts to inhibit the uptake and to stimulate the excretion of Na(+) but not water, thereby promoting seawater (SW) adaptation. In fact, ANP is secreted immediately after transfer of eels to SW and ameliorates sudden increases in plasma Na(+) concentration through inhibition of drinking and intestinal absorption of NaCl. ANP also stimulates the secretion of cortisol, a long-acting hormone for SW adaptation, whereas ANP itself disappears quickly from the circulation. Thus ANP is a primary hormone responsible for the initial phase of SW adaptation. By contrast, CNP appears to be a hormone involved in freshwater (FW) adaptation. Recent data show that the gene expression of CNP and its specific receptor, NPR-B, is much enhanced in FW eels. In fact, CNP infusion increases (22)Na uptake from the environment in FW eels. These results show that ANP and CNP, despite high sequence identity, have opposite effects on salinity adaptation in eels. This difference apparently originates from the difference in their specific receptors, ANP for NPR-A and CNP for NPR-B. VNP may compensate the effects of ANP and CNP for adaptation to respective media, because it has high affinity to both receptors. On the basis of these data, the authors suggest that the natriuretic peptide system is a key endocrine system that allows this euryhaline fish to adapt to diverse osmotic environments, particularly in the initial phase of adaptation.  相似文献   

17.
Immunoreactive atrial natriuretic polypeptide (ANP) was investigated in the pituitary of rats by light and electron microscopy using the indirect immunofluorescence and peroxidase-antiperoxidase techniques. ANP-like immunoreactivity was present in 30-35% of anterior pituitary cells. These cells have two types of secretory granules being characteristic of rat gonadotrophin-storing granules, and were usually adjacent to the capillary endothelium. The results of this study suggest the co-occurrence of ANP and gonadotrophins in the anterior pituitary cells.  相似文献   

18.
心钠素前体分子内调控对心肌Na^+—K^+—ATP酶的作用   总被引:11,自引:0,他引:11  
目的:研究利钾尿肽及心钠素前体分子内调控作用对心肌Na+K+ATP酶的作用。方法:将大鼠心肌匀浆后,分别加入利钾尿肽、心钠素以及利钾尿肽+心钠素,用比色法测定Na+K+ATP酶活性。将大鼠心脏悬挂于Langendorf灌流装置,分别以利钾尿肽、心钠素、利钾尿肽+心钠素为灌流液,灌注心脏,用四道生理仪观测左心室内压、左心室收缩最大速率,左心室舒张最大速率,心率及冠脉流量。结果:心钠素虽然对Na+K+ATP酶有抑制作用(抑制率26.2%),但是,与对照无显著性差异(P>0.05)。利钾尿肽显著抑制酶的活性(抑制率46.5%,P<0.01)这种抑制作用可被心钠素抵消(抑制率17.6%,P>0.05)。利钾尿肽可以增加左心室收缩和舒张最大速率以及左室内压,而这种强心作用可因心钠素的加入而消失或减弱。结论:利钾尿肽可以抑制心肌Na+K+ATP酶的活性,产生强心作用,心钠素可以抵消以上作用。  相似文献   

19.
  • 1.1. The content of atrial natriuretic peptides (ANPs) in the auricles of oysters, Crassostrea virginica, was significantly (P < 0.01) greater than in their ventricles.
  • 2.2. High-performance gel permeation chromatography (HP-GPC) followed by ANF radioimmunoassay revealed two peaks in both oyster and vertebrate (rat) hearts—a major peak where the 12.6–14 kDa ANF prohormone elutes and a smaller peak where the pure human form of ANF elutes.
  • 3.3. HP-GPC evaluation followed by proANF 31–67 radioimmunoassay revealed only an ANF-like prohormone while HP-GPC followed by proANF 1–30 radioimmunoassay revealed the ANF prohormone and a proANF 1–30-like peptide in oyster and rat hearts.
  • 4.4. ANPs concentrations in hemolymph were 940 ± 129, 225 ± 25, and 100 ± 10 pg/ml by the proANF 1–30, proANF 31–67, and ANF radioimmunoassays, respectively.
  • 5.5. Atrial natriuretic-like peptides are present in the oyster heart in molecular species similar to vertebrate species and these peptides are also present in hemolymph.
  相似文献   

20.
A-type (atrial) natriuretic peptide (ANP) levels in heart and plasma were examined by immunohistochemistry, electron microscopy, and radioimmunoassay (RIA) in hypertensive transgenic mice (Tsukuba hypertensive mice; THM). Additionally, the ANP mRNA level in the heart was measured using real-time polymerase chain reaction (PCR) assay. The blood pressure and the ratio of heart weight to body weight in THM was significantly higher than those in the control mice (C57BL/6J). The number of ANP-granules and ANP immunoreactivity in the auricular cardiocytes were significantly lower in THM than in the control. Ultrastructurally, the ventricular cardiocytes in the THM occasionally had ANP-like granules, which were not present in the controls. Using RIA, the plasma, auricular, and ventricular ANP concentrations were significantly higher in THM than in the control, but there was no significant difference in plasma cyclic guanosine monophosphate (GMP) concentration between THM and the control. The ANP mRNA levels of the auricular and ventricular cardiocytes in the THM were siginificantly higher than those in the controls. The present study suggested that the ANP release system of the auricular cardiocytes in these transgenic mice is different from normal (control mice).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号