首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundAcute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.MethodsWe screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups.ResultsEight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups.ConclusionThis study constitutes the first report from Pakistan reporting significant molecular mutation analysis of RUNX1 and FLT3 genes including FLT3 expression evaluation with follow-up. This provides an insight that aforementioned mutations are markers of poor prognosis but the study with a large AML cohort will be useful to further investigate their role in disease biology of AML.  相似文献   

2.
We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A) and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM). SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS) was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04) and sole TET2 mutations (P<0.001). In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.  相似文献   

3.
The effect of time from diagnosis to treatment (TDT) on overall survival of patients with acute myeloid leukemia (AML) remains obscure. Furthermore, whether chemotherapy delay impacts overall survival (OS) of patients with a special molecular subtype has not been investigated. Here, we enrolled 364 cases of AML to assess the effect of TDT on OS by fractional polynomial regression in the context of clinical parameters and genes of FLT3ITD, NPM1, CEBPA, DNMT3a, and IDH1/2 mutations. Results of the current study show IDH1/2 mutations are associated with older age, M0 morphology, an intermediate cytogenetic risk group, and NPM1 mutations. TDT associates with OS for AML patients in a nonlinear pattern with a J shape. Moreover, adverse effect of delayed treatment on OS was observed in patients with IDH1/2 mutations, but not in those with IDH1/2 wildtype. Therefore, initiating chemotherapy as soon as possible after diagnosis might be a potential strategy to improve OS in AML patients with IDH1/2 mutations.  相似文献   

4.
5.

Background:

Acute promyelocytic leukemia (APL) with t (15;17) is a distinct category of acute myeloid leukemia (AML) and is reported to show better response to anthracyclin based chemotherapy. A favorable overall prognosis over other subtypes of AML has been reported for APL patients but still about 15% patients relapse.

Methods:

This study evaluated the presence of Famus like tyrosine kinase-3 (FLT3) and nucleophosmin-1 (NPM1) gene mutations in a cohort of 40 APL patients. Bone marrow/peripheral blood samples from patients at the time of diagnosis and follow-up were processed for immunophenotyping, cytogenetic markers and isolation of DNA and RNA. Samples were screened for the presence of mutations in FLT3 and NPM1 genes using polymerase chain reaction followed by sequencing.

Results:

Frequency of FLT3/internal tandem duplication and FLT3/tyrosine kinase domain was found to be 25% and 7% respectively. We observed a high frequency of NPM1 mutation (45%) in the present population of APL patients.  相似文献   

6.

Background

Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous disease. The survival of older patients is generally poor. In the current study, we sought to investigate the differences in molecular gene mutations between younger and older AML patients, and to identify those newly diagnosed AML patients who are more likely to respond to standard cytarabine and daunorubicin induction chemotherapy.

Methods

We retrospectively evaluated 179 patients who were newly diagnosed with non-M3 AML. A next-generation sequencing assay covering 34 genes was used to investigate recurrently mutated genes. The mutational status of fusion genes was determined by real time PCR.

Results

The median age at diagnosis was 53 years (range 18–88 years). Sixty-eight patients were 60 years or older with a median age of 67 years (range 60–88 years). Eighteen patients (10.1%) carried t(8;21)(q22;q22.1) or RUNX1RUNX1T1 gene fusion, and there was a significantly higher incidence in younger patients (p?=?0.019). At least one non-synonymous gene mutation was detected in 159 patients (88.8%). The median number of gene mutations was two (range 0–6). The mean number of molecular gene mutations at diagnosis was higher in older patients than younger patients (2.5 vs 1.83, p?=?0.003). Older patients had significantly higher incidences of ASXL1 (22.1% vs 13.5%, p?=?0.025) and TP53 mutations (13.2% vs 3.6%, p?=?0.034). In total, 78 patients received DA60 (daunorubicin 60 mg/m2 per day on days 1–3 and cytarabine 100 mg/m2 twice per day on days 1–7) as the induction therapy, and information was available on their response to induction treatment. Patients with RUNX1RUNX1T1 gene fusion were significantly more likely to achieve complete remission (CR) after DA60 induction therapy (p?=?0.026), as were patients without the ASXL1 mutation (p?=?0.007).

Conclusion

Older AML patients had a lower incidence of favorable cytogenetics and higher frequencies and burdens of molecular mutations that are associated with poor prognosis compared to younger patients. Patients with RUNX1RUNX1T1 gene fusion or without the ASXL1 gene mutation had a better chance of achieving CR when treated with cytarabine and daunorubicin induction chemotherapy.
  相似文献   

7.
8.
BackgroundAlthough cytogenetics-based prognostication systems are well described in acute myeloid leukemia (AML), overall survival (OS) remains highly variable within risk groups. An integrated genetic prognostic (IGP) model using cytogenetics plus mutations in nine genes was recently proposed for patients ≤60 years to improve classification. This model has not been validated in clinical practice.ConclusionsThe IGP model was not completely validated in our cohort. However, mutations in six out of the nine genes can be used to characterize survival (NPMI, IDH1, IDH2, FLT3-ITD, TET2, DNMT3A) and allow for more robust prognostication in the patients who are re-categorized by the IGP model. These mutations should be incorporated into clinical testing for younger patients outside of clinical trials, in order to guide therapy.  相似文献   

9.
《Epigenetics》2013,8(2):201-207
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.  相似文献   

10.
Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis.  相似文献   

11.
12.
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.Key words: TET2, DNA methylation, mutation, CMML, promoter  相似文献   

13.
Chronic myelomonocytic leukemia (CMML) has recently been associated with a high incidence of diverse mutations in genes such as TET2 or EZH2 that are implicated in epigenetic mechanisms. We have performed genome-wide DNA methylation arrays and mutational analysis of TET2, IDH1, IDH2, EZH2 and JAK2 in a group of 24 patients with CMML. 249 genes were differentially methylated between CMML patients and controls. Using Ingenuity pathway analysis, we identified enrichment in a gene network centered around PLC, JNK and ERK suggesting that these pathways, whose deregulation has been recently described in CMML, are affected by epigenetic mechanisms. Mutations of TET2, JAK2 and EZH2 were found in 15 patients (65%), 4 patients (17%) and 1 patient (4%) respectively while no mutations in the IDH1 and IDH2 genes were identified. Interestingly, patients with wild type TET2 clustered separately from patients with TET2 mutations, showed a higher degree of hypermethylation and were associated with higher risk karyotypes. Our results demonstrate the presence of aberrant DNA methylation in CMML and identifies TET2 mutant CMML as a biologically distinct disease subtype with a different epigenetic profile.  相似文献   

14.
15.

Introduction

Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10–30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs.

Methods

Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the “human-like” hot spot mutations of listed genes.

Results

No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples.

Conclusion

Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM.  相似文献   

16.
FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy.  相似文献   

17.
18.
The RUNX1/AML1 gene is among the most frequently mutated genes in human leukaemia. However, its association with T-cell acute lymphoblastic leukaemia (T-ALL) remains poorly understood. In order to examine RUNX1 point mutations in T-ALL, we conducted an amplicon-based deep sequencing in 65 Southeast Asian childhood patients and 20 T-ALL cell lines, and detected RUNX1 mutations in 6 patients (9.2%) and 5 cell lines (25%). Interestingly, RUNX1-mutated T-ALL cases seem to constitute a subset of early immature T-ALL that may originate from differentiated T-cells. This result provides a deeper insight into the mechanistic basis for leukaemogenesis.  相似文献   

19.

Background

Molecular characterisation of normal karyotype acute myeloid leukemia (NK-AML) allows prognostic stratification and potentially can alter treatment choices and pathways. Approximately 45–60% of patients with NK-AML carry NPM1 gene mutations and are associated with a favourable clinical outcome when FLT3-internal tandem duplications (ITD) are absent. High resolution melting (HRM) is a novel screening method that enables rapid identification of mutation positive DNA samples.

Results

We developed HRM assays to detect NPM1 mutations and FLT3-ITD and tested diagnostic samples from 44 NK-AML patients. Eight were NPM1 mutation positive only, 4 were both NPM1 mutation and FLT3-ITD positive and 4 were FLT3-ITD positive only. A novel point mutation Y572C (c.1715A>G) in exon 14 of FLT3 was also detected. In the group with de novo NK-AML, 40% (12/29) were NPM1 mutation positive whereas NPM1 mutations were observed in 20% (3/15) of secondary NK-AML cases. Sequencing was performed and demonstrated 100% concordance with the HRM results.

Conclusion

HRM is a rapid and efficient method of screening NK-AML samples for both novel and known NPM1 and FLT3 mutations. NPM1 mutations can be observed in both primary and secondary NK-AML cases.  相似文献   

20.
Acute myeloid leukemia (AML) is a clinically and a molecularly heterogeneous disease characterized by the accumulation of undifferentiated and uncontrolled proliferation of hematopoietic progenitor cells. The sub-group named “AML with gene mutations” includes mutations in nucleophosmin (NPM1) assumed as a distinct leukemic entity. NPM1 is an abundant multifunctional protein belonging to the nucleoplasmin family of nuclear chaperones. AML mutated protein is translocated into the cytoplasm (NPM1c+) retaining all functional domains except the loss of a unique NoLs (nucleolar localization signal) at the C-term domain (CTD) and the subsequent disruption of a three helix bundle as tertiary structure. The oligomeric state of NPM1 is of outmost importance for its biological roles and our previous studies linked an aggregation propensity of distinct regions of CTD to leukomogenic potentials of AML mutations. Here we investigated a polypeptide spanning the third and second helices of the bundle of type A mutated CTD. By a combination of several techniques, we ascertained the amyloid character of the aggregates and of fibrils resulting from a self-recognition mechanism. Further amyloid assemblies resulted cytoxic in MTT assay strengthening a new idea of a therapeutic strategy in AML consisting in the self-degradation of mutated NPM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号