首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oliver DJ 《Plant physiology》1981,68(5):1031-1034
Mechanically isolated soybean leaf cells metabolized added glycolate by two mechanisms, the direct oxidation of glyoxylate and the decarboxylation of glycine. The rate of glyoxylate oxidation was dependent on the cellular glyoxylate concentration and was linear between 0.58 and 2.66 micromoles glyoxylate per milligram chlorophyll. The rate extrapolated to zero at a concentration of zero. The concentration and, therefore, the rate of oxidation of glyoxylate could be decreased by adding glutamate or serine to the cells. These substrates were amino donors for the transamination of glyoxylate to glycine. In the presence of these amino acids more CO2 was released from added glycolate via the glycine decarboxylation reaction and less by the direct oxidation of glyoxylate.  相似文献   

2.
The activity of two photorespiratory enzymes, phosphoglycolate phosphatase (PGPase) and glycolate dehydrogenase (glycolate DH), changes when CO2-enriched wild-type (WT) Chlamydomonas reinhardtii cells are transferred to air levels of CO2. Adaptation to air levels of CO2 by Chlamydomonas involves induction of a CO2-concentrating mechanism (CCM) which increases the internal inorganic carbon concentration and suppresses oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. PGPase in cell extracts shows a transient increase in activity that reaches a maximum 3 to 5 hours after transfer and then declines to the original level within 48 hours. The decline in PGPase activity begins at about the time that physiological evidence indicates the CCM is approaching maximal activity. Glycolate DH activity in 24 hour air-adapted WT cells is double that seen in CO2-enriched cells. Unlike WT, the high-CO2-requiring mutant, cia-5, does not respond to limiting CO2 conditions: it does not induce any known aspects of the CCM and it does not show changes in PGPase or glycolate DH activities. Other known mutants of the CCM show patterns of PGPase and glycolate DH activity after transfer to limiting CO2 which are different from WT and cia-5 but which are consistent with changes in activity being initiated by the same factor that induces the CCM, although secondary regulation must also be involved.  相似文献   

3.
Acclimation of Photosynthesis to Elevated CO(2) in Five C(3) Species   总被引:18,自引:5,他引:13  
The effect of long-term (weeks to months) CO2 enhancement on (a) the gas-exchange characteristics, (b) the content and activation state of ribulose-1,5-bisphosphate carboxylase (rubisco), and (c) leaf nitrogen, chlorophyll, and dry weight per area were studied in five C3 species (Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, and Brassica oleracea) grown at CO2 partial pressures of 300 or 900 to 1000 microbars. Long-term exposure to elevated CO2 affected the CO2 response of photosynthesis in one of three ways: (a) the initial slope of the CO2 response was unaffected, but the photosynthetic rate at high CO2 increased (S. tuberosum); (b) the initial slope decreased but the CO2-saturated rate of photosynthesis was little affected (C. album, P. vulgaris); (c) both the initial slope and the CO2-saturated rate of photosynthesis decreased (B. oleracea, S. melongena). In all five species, growth at high CO2 increased the extent to which photosynthesis was stimulated following a decrease in the partial pressure of O2 or an increase in measurement CO2 above 600 microbars. This stimulation indicates that a limitation on photosynthesis by the capacity to regenerate orthophosphate was reduced or absent after acclimation to high CO2. Leaf nitrogen per area either increased (S. tuberosum, S. melongena) or was little changed by CO2 enhancement. The content of rubisco was lower in only two of the five species, yet its activation state was 19% to 48% lower in all five species following long-term exposure to high CO2. These results indicate that during growth in CO2-enriched air, leaf rubisco content remains in excess of that required to support the observed photosynthetic rates.  相似文献   

4.
Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress.  相似文献   

5.
Young bean plants (Phaseolus vulgaris L. cv Seafarer) grew faster in air enriched with CO2 (1200 microliters per liter) than in ambient CO2 (330 microliters per liter). However, by 7 days when increases in overall growth (dry weight, leaf area) were visible, there was a significant decline (about 25%) in the leaf mineral content (N, P, K, Ca, Mg) and a drop in the activity of two enzymes of carbon fixation, carbonic anhydrase and ribulose 1,5-bisphosphate (RuBP) carboxylase under high CO2. Although the activity of neither enzyme was altered in young, expanding leaves during the acclimation period, in mature leaves the activity of carbonic anhydrase was reduced 95% compared with a decline of 50% in ambient CO2. The drop in RuBP carboxylase was less extreme with 40% of the initial activity retained in the high CO2 compared with 50% in the ambient atmosphere. While CO2 enrichment might alter the flow of carbon into the glycolate pathway by modifying the activities of carbonic anhydrase or RuBP carboxylase, there is no early change in the ability of photosynthetic tissue to oxidize glycolate to CO2.  相似文献   

6.
植物对开放式CO2 浓度增高(FACE)的响应与适应研究进展   总被引:8,自引:0,他引:8  
开放式CO2浓度增高(FACE)系统是近年研究植物对高CO2浓度响应和适应的新手段,它比以往密闭和半密闭系统对实验植物生长环境的干扰少.利用FACE系统进行研究更有助于正确地预测未来大气CO2浓度增高对植物的影响.该文结合作者的研究工作简要评介了FACE系统与以往密闭和半密闭式CO2浓度增高实验系统的不同之处以及近年来利用FACE系统所作的最新研究进展.  相似文献   

7.
在同样CO2浓度下测定时,开放式空气CO2浓度增高(FACE,580 μmol CO2 /mol)条件下生长的冬小麦叶片的净光合速率、气孔导度和羧化效率都显著低于普通空气(380 μmol CO2 /mol)中生长的对照叶片.与此相一致,FACE叶片的可溶性蛋白、二磷酸核酮糖羧化酶/加氧酶(Rubisco)和Rubisco活化酶含量也都显著低于对照叶片.这些结果表明,在根系生长不受限制的田间条件下,冬小麦叶片的光合作用对高浓度CO2产生了适应现象,其主要原因可能是碳同化的关键酶Rubisco等含量的降低.  相似文献   

8.
CO2 concentrations of 1000 compared to 350 microliters per liter in controlled environment chambers did not increase total fruit weight or number in a monoecious cucumber (Cucumis sativus L. cv Chipper) nor did it increase biomass, leaf area, or relative growth rates beyond the first 16 days after seeding. Average fruit weight was slightly, but not significantly greater in the 1000 microliters per liter CO2 treatment because fruit numbers were changed more than total weight. Plants grown at 1000 and 350 microliters per liter CO2 were similar in distribution of dry matter and leaf area between mainstem, axillary, and subaxillary branches. Early flower production was greater in 1000 microliters per liter plants. Subsequent flower numbers were either lower in enriched plants or similar in the two treatments, except for the harvest at fruiting when enriched plants produced many more male flowers than the 350 microliters per liter treatments.  相似文献   

9.
10.
植物对大气CO2浓度升高的光合适应机理   总被引:9,自引:2,他引:9  
光合作用对大气中CO2浓度升高适应的可能原因主要表现在以下几个方面:由于CO2浓度升高,碳水化合物过量积累,光合电子传递链中质体醌与过氧化氢(H2O2)的氧化还原信号对光合作用发生反馈抑制;核酮糖1,5-二磷酸羧化/加氧酶(Rubisco)的含量及其活性下降;气孔状态发生变化.此外,植物体内C/N平衡、生长调节物质和己糖激酶对光合基因表达水平的调控等多个方面会对光合适应产生影响.  相似文献   

11.
Moss DN  Rasmussen HP 《Plant physiology》1969,44(7):1063-1065,1067-1068
Leaves of maize (Zea mays L.) and sugar beet (Beta vulgaris L.) were enclosed in an illuminated chamber in air for 30 min after which time 14CO2 was released into the chamber. Two min after the 14CO2 was released, the leaves were removed from the chamber, and small sections were cut from them. The sections were put in small wire baskets and frozen in isopentane cooled by liquid nitrogen. Approximately 1.5 min elapsed from the removal of the leaf from the illuminated chamber until the tissue was frozen. The tissue was freeze-dried, embedded in paraffin and the cellular location of the isotopic activity was determined by radiography of leaf cross sections. Isotopic activity in maize leaves was localized in bundle sheath parenchyma. In contrast, the label in sugar beet leaves was generally distributed in the mesophyll cells. The bundle sheath cells in maize contain specialized chloroplasts which appear to have a unique capacity to incorporate CO2. Translocation from leaves of maize was 3-fold as rapid as from sugar beet leaves in the same environment. Low light intensity did not alter the distribution pattern of fixed CO2.  相似文献   

12.
For the leaf succulent Agave deserti and the stem succulent Ferocactus acanthodes, increasing the ambient CO2 level from 350 microliters per liter to 650 microliters per liter immediately increased daytime net CO2 uptake about 30% while leaving nighttime net CO2 uptake of these Crassulacean acid metabolism (CAM) plants approximately unchanged. A similar enhancement of about 30% was found in dry weight gain over 1 year when the plants were grown at 650 microliters CO2 per liter compared with 350 microliters per liter. Based on these results plus those at 500 microliters per liter, net CO2 uptake over 24-hour periods and dry weight productivity of these two CAM succulents is predicted to increase an average of about 1% for each 10 microliters per liter rise in ambient CO2 level up to 650 microliters per liter.  相似文献   

13.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO2. Carbon exchange rates were significantly higher in CO2-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO2. This indicates that the long-term decline of photosynthetic efficiency of leaf 5 cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO2 when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO2 concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO2 cannot entirely explain the loss of photosynthetic efficiency of high CO2-grown plants.  相似文献   

14.
CO(2)-insensitive mutants of the green alga Chlorella ellipsoidea were previously shown to be unable to repress an inorganic carbon-concentrating mechanism (CCM) when grown under 5% CO(2). When air-grown, wild-type (WT) cells were transferred to 5% CO(2), an abrupt drop of P(max) to 43% the original level of air-grown cells was observed within the initial 12 h. Photosynthetic affinities of WT cells to dissolved inorganic carbon (DIC) were maintained at high levels for the initial 4 d of acclimation, and then decreased gradually to lower levels over the next 6 d. In contrast to WT cells, the CO(2)-insensitive mutant, ENU16, exhibited a constant P(max) at maximum levels and a low K(1/2)[DIC] throughout the acclimation period. The rapid P(max) drop within 12 h of acclimation in WT cells was significantly reduced by treatment with 0.5 mm of 6-ethoxybenzothiazole-2-sulphonamide (EZA), a specific membrane-permeable inhibitor of carbonic anhydrase (CA), suggesting the participation of internal CAs in the temporary drop in P(max) in WT cells. WT and ENU16 cells were grown in controlled equilibrium [CO(2)], and the photosynthetic rate of each acclimated cell type was measured under equilibrated growth [DIC] conditions. In WT cells acclimated to 0.14-0.4% [CO(2)], K(1/2)[DIC] values increased as [CO(2)] increased, and the photosynthetic rates at growth DIC conditions were shown to decrease to about 70% the P(max) level in this intermediate [CO(2)] range. Such decreases in the net photosynthetic rates were not observed in ENU16. These results suggest that algal primary production could be depressed significantly under moderately enriched CO(2) conditions as a result of acquiring intermediate affinities for DIC because of their sensitive responses to changes in the ambient [CO(2)].  相似文献   

15.
长期在高浓度CO2环境下生长的植物往往会发生光合适应或下调,即在相同CO2浓度下的光合速率明显低于普通空气中生长的对照。虽然关于这种现象已经有许多研究报告和综述文章,但是它的机理还不很清楚。本文结合作者所在研究组的工作,概述了关于植物光合适应机理研究的新进展,提出除了呼吸作用增强和光合产物超常积累的可能作用以外,二磷酸核酮糖(RuBP)羧化限制和RuBP再生限制可能是导致植物光合适应的主要因素。  相似文献   

16.
17.
18.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

19.
The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号