首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Although antibodies are critical for immunity to malaria, their functional attributes that determine protection remain unclear. We tested for associations between antibody avidities to Plasmodium falciparum (Pf) antigens and age, asymptomatic parasitaemia, malaria exposure index (a distance weighted local malaria prevalence) and immunity to febrile malaria during 10-months of prospective follow up.

Methods

Cross-sectional antibody levels and avidities to Apical Membrane Antigen 1 (AMA1), Merozoite Surface Protein 142 (MSP1) and Merozoite Surface Protein 3 (MSP3) were measured by Enzyme Linked Immunosorbent Assay in 275 children, who had experienced at least one episode of clinical malaria by the time of this study, as determined by active weekly surveillance.

Results

Antibody levels to AMA1, MSP1 and MSP3 increased with age. Anti-AMA1 and MSP1 antibody avidities were (respectively) positively and negatively associated with age, while anti-MSP3 antibody avidities did not change. Antibody levels to all three antigens were elevated in the presence of asymptomatic parasitaemia, but their associated avidities were not. Unlike antibody levels, antibody avidities to the three-merozoite antigens did not increase with exposure to Pf malaria. There were no consistent prospective associations between antibody avidities and malaria episodes.

Conclusion

We found no evidence that antibody avidities to Pf-merozoite antigens are associated with either exposure or immunity to malaria.  相似文献   

2.
Abstract An enzyme-linked immunosorbent assay (ELISA) has been developed to measure antibody levels in human sera to a candidate vaccine antigen, merozoite surface protein-1 (MSP1), of the malaria parasite Plasmodium falciparum . To ensure the detection of antibodies reactive with important conformational epitopes, antigens used in the ELISA were obtained from either in vitro parasite cultures, or from a baculovirus expression system in which correct folding of recombinant MSP1-derived polypeptides has been previously demonstrated. The specificity of the ELISA was confirmed using a novel antibody affinity select method. The assay was used to investigate the pattern of acquisition of anti-MSP1 antibodies in a cross-sectional survey of 387 3–8 year old residents of a malaria endemic area of the Gambia. A significant positive correlation between anti-MSP1 antibody levels and age was evident, though individual responses to two antigens corresponding to two distinct domains of the MSP1 varied widely.  相似文献   

3.

Background

Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated with anti-malarial protection, will help in the development of malaria vaccines.

Methods and Findings

We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia, had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-related decline was observed in these effects.

Conclusion

Our data are consistent with the idea that protection against P. falciparum malaria in children depends on acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and -MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.  相似文献   

4.
To determine whether antibodies to the 19-kDa fragment of merozoite surface protein 1 (MSP1(19)) help to control blood-stage Plasmodium falciparum infection, we performed a rechallenge experiment of previously infected Aotus monkeys. Monkeys previously exposed to the FVO strain of P. falciparum that did or did not develop high antibody titers to MSP1(19) and malaria-na?ve monkeys were challenged with erythrocytes infected with the same strain. Prepatent periods were prolonged in previously infected monkeys compared with malaria-na?ve monkeys. Previously infected monkeys with preexisting anti-MSP1(19) antibodies showed low peak parasitemias that cleared spontaneously. Previously infected monkeys that had no or low levels of pre-existing anti-MSP1(19) antibodies also showed low peak parasitemias, but because of low hematocrits, all of these animals required treatment with mefloquine. All previously malaria-na?ve animals were treated because of high parasitemias. The results of this study suggest that antibody to the 19-kDa carboxy-terminal fragment of MSP1 plays a role in preventing the development of anemia, an important complication often associated with malaria.  相似文献   

5.
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.  相似文献   

6.

Background

Children below six months are reported to be less susceptible to clinical malaria. Maternally derived antibodies and foetal haemoglobin are important putative protective factors. We examined antibodies to Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate-rich protein (GLURP), in children in their first two years of life in Burkina Faso and their risk of malaria.

Methods

A cohort of 140 infants aged between four and six weeks was recruited in a stable transmission area of south-western Burkina Faso and monitored for 24 months by active and passive surveillance. Malaria infections were detected by examining blood smears using light microscopy. Enzyme-linked immunosorbent assay was used to quantify total Immunoglobulin G to Plasmodium falciparum antigens MSP3 and two regions of GLURP (R0 and R2) on blood samples collected at baseline, three, six, nine, 12, 18 and 24 months. Foetal haemoglobin and variant haemoglobin fractions were measured at the baseline visit using high pressure liquid chromatography.

Results

A total of 79.6% of children experienced one or more episodes of febrile malaria during monitoring. Antibody titres to MSP3 were prospectively associated with an increased risk of malaria while antibody responses to GLURP (R0 and R2) did not alter the risk. Antibody titres to MSP3 were higher among children in areas of high malaria risk. Foetal haemoglobin was associated with delayed first episode of febrile malaria and haemoglobin CC type was associated with reduced incidence of febrile malaria.

Conclusions

We did not find any evidence of association between titres of antibodies to MSP3, GLURP-R0 or GLURP-R2 as measured by enzyme-linked immunosorbent assay and early protection against malaria, although anti-MSP3 antibody titres may reflect increased exposure to malaria and therefore greater risk. Foetal haemoglobin was associated with protection against febrile malaria despite the study limitations and its role is therefore worthy further investigation.  相似文献   

7.

Background

Former studies have pointed to a monocyte-dependant effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies.

Methods and Findings

We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate.

Conclusion

The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies.  相似文献   

8.
Plasmodium falciparum infection during pregnancy contributes substantially to malaria burden in both mothers and offspring. Analysis of naturally acquired immune responses that confer protection against parasitemia and clinical disease is important to guide vaccine evaluation as well as identify immune correlates. Unfortunately, few studies have addressed the relationship between immune responses to malaria vaccine candidate antigens and protection against adverse effects on pregnant women and newborn birth weight. This study examines the relationship of maternal antibody responses to serine repeat antigen-5 (SE36) and merozoite surface protein-1 (MSP119 and MSP142) with placental parasitemia and birth weight. In a peri-urban setting in Uganda, pregnant women without placental parasites have high median ODs for antibodies against SE36 (P < 0.001). Naturally acquired anti-SE36 IgG was most prevalent in women without placental parasitemia (P < 0.001). Furthermore, pregnant women with significantly high levels of anti-SE36 IgG delivered babies with normal birth weights (P < 0.001). That antibody to SE36 was associated with both a reduced risk of placental parasitemia and resulting normal birth weight in newborns suggests some protective role. In contrast, although antibody to MSP142 was also associated with reduced placental parasitemia and immune responses to both MSP119 and MSP142 may be of importance, there was no association between anti-MSP119 antibodies and infant birth weight outcomes. This study highlights the need for conducting further studies to investigate the association of antibodies against SE36 and outcomes of malaria infection in pregnant women.  相似文献   

9.
Mills  Anne  Lubell  Yoel  Hanson  Kara 《Malaria journal》2008,7(1):1-13

Background

Plasmodium falciparum infection causes cerebral malaria (CM) in a subset of patients with anti-malarial treatment protecting only about 70% to 80% of patients. Why a subset of malaria patients develops CM complications, including neurological sequelae or death, is still not well understood. It is believed that host immune factors may modulate CM outcomes and there is substantial evidence that cellular immune factors, such as cytokines, play an important role in this process. In this study, the potential relationship between the antibody responses to the merozoite surface protein (MSP)-1 complex (which consists of four fragments namely: MSP-183, MSP-130, MSP-138 and MSP-142), MSP-636 and MSP-722 and CM was investigated.

Methods

Peripheral blood antibody responses to recombinant antigens of the two major allelic forms of MSP-1 complex, MSP-636 and MSP-722 were compared between healthy subjects, mild malaria patients (MM) and CM patients residing in a malaria endemic region of central India. Total IgG and IgG subclass antibody responses were determined using ELISA method.

Results

The prevalence and levels of IgG and its subclasses in the plasma varied for each antigen. In general, the prevalence of total IgG, IgG1 and IgG3 was higher in the MM patients and lower in CM patients compared to healthy controls. Significantly lower levels of total IgG antibodies to the MSP-1f38, IgG1 levels to MSP-1d83, MSP-119 and MSP-636 and IgG3 levels to MSP-1f42 and MSP-722 were observed in CM patients as compared to MM patients.

Conclusion

These results suggest that there may be some dysregulation in the generation of antibody responses to some MSP antigens in CM patients and it is worth investigating further whether perturbations of antibody responses in CM patients contribute to pathogenesis.  相似文献   

10.
Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria. Anti-GPI IgGs were significantly lower in patients hospitalized with confirmed cerebral malaria compared to those with mild malaria (P < 0.01) but did not discriminate for fatal outcome. In contrast, a specific marker of the anti-parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in both cerebral and mild malaria individuals, although it was significantly lower in a subgroup with fatal outcomes. These results are consistent with a potential anti-toxin role for anti-GPI antibodies associated with protection against cerebral malaria.  相似文献   

11.
Introduction: Plasmodium vivax (Pv) and P. knowlesi account together for a considerable share of the global burden of malaria, along with P. falciparum (Pf). However, inaccurate diagnosis and undetectable asymptomatic/submicroscopic malaria infections remain very challenging. Blood-stage antigens involved in either invasion of red blood cells or sequestration/cytoadherence of parasitized erythrocytes have been immunomics-characterized, and are vital for the detection of malaria incidence.

Areas covered: We review the recent advances in Plasmodium immunomics to discuss serological markers with potential for specific and sensitive diagnosis of malaria. Insights on alternative use of immunomics to assess malaria prevalence are also highlighted. Finally, we provide practical applications of serological markers as diagnostics, with an emphasis on dot immunogold filtration assay which holds promise for malaria diagnosis and epidemiological surveys.

Expert commentary: The approach largely contributes to Pf and Pv research in identifying promising non-orthologous antigens able to detect malaria incidence and to differentiate between past and recent infections. However, further studies to profiling naturally acquired immune responses are expected in order to help discover/validate serological markers of no cross-seroreactivity and guide control interventions. More so, the application of immunomics to knowlesi infections would help validate the recently identified antigens and contribute to the discovery of additional biomarkers of exposure, immunity, or both.  相似文献   


12.

Background

In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion.

Methodology/Principal Findings

The trial was designed to include three dose cohorts (10, 40, and 80 µg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth.

Conclusions/Significance

As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant.

Trial Registration

Australian New Zealand Clinical Trials Registry 12607000552482  相似文献   

13.
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C-nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme.  相似文献   

14.
Heterozygous hemoglobin (Hb) AS (sickle-cell trait) and HbAC are hypothesized to protect against Plasmodium falciparum malaria in part by enhancing naturally-acquired immunity to this disease. To investigate this hypothesis, we compared antibody levels to four merozoite antigens from the P. falciparum 3D7 clone (apical membrane antigen 1, AMA1-3D7; merozoite surface protein 1, MSP1-3D7; 175 kDa erythrocyte-binding antigen, EBA175-3D7; and merozoite surface protein 2, MSP2-3D7) in a cohort of 103 HbAA, 73 HbAS and 30 HbAC children aged 3 to 11 years in a malaria-endemic area of Mali. In the 2009 transmission season we found that HbAS, but not HbAC, significantly reduced the risk of malaria compared to HbAA. IgG levels to MSP1 and MSP2 at the start of this transmission season inversely correlated with malaria incidence after adjusting for age and Hb type. However, HbAS children had significantly lower IgG levels to EBA175 and MSP2 compared to HbAA children. On the other hand, HbAC children had similar IgG levels to all four antigens. The parasite growth-inhibitory activity of purified IgG samples did not differ significantly by Hb type. Changes in antigen-specific IgG levels during the 2009 transmission and 2010 dry seasons also did not differ by Hb type, and none of these IgG levels dropped significantly during the dry season. These data suggest that sickle-cell trait does not reduce the risk of malaria by enhancing the acquisition of IgG responses to merozoite antigens.  相似文献   

15.

Background

Considering the natural history of malaria of continued susceptibility to infection and episodes of illness that decline in frequency and severity over time, studies which attempt to relate immune response to protection must be longitudinal and have clearly specified definitions of immune status. Putative vaccines are expected to protect against infection, mild or severe disease or reduce transmission, but so far it has not been easy to clearly establish what constitutes protective immunity or how this develops naturally, especially among the affected target groups. The present study was done in under six year old children to identify malaria antigens which induce antibodies that correlate with protection from Plasmodium falciparum malaria.

Methods

In this longitudinal study, the multiplex assay was used to measure IgG antibody levels to 10 malaria antigens (GLURP R0, GLURP R2, MSP3 FVO, AMA1 FVO, AMA1 LR32, AMA1 3D7, MSP1 3D7, MSP1 FVO, LSA-1and EBA175RII) in 325 children aged 1 to 6 years in the Kassena Nankana district of northern Ghana. The antigen specific antibody levels were then related to the risk of clinical malaria over the ensuing year using a negative binomial regression model.

Results

IgG levels generally increased with age. The risk of clinical malaria decreased with increasing antibody levels. Except for FMPOII-LSA, (p = 0.05), higher IgG levels were associated with reduced risk of clinical malaria (defined as axillary temperature ≥37.5°C and parasitaemia of ≥5000 parasites/ul blood) in a univariate analysis, upon correcting for the confounding effect of age. However, in a combined multiple regression analysis, only IgG levels to MSP1-3D7 (Incidence rate ratio = 0.84, [95% C.I.= 0.73, 0.97, P = 0.02]) and AMA1 3D7 (IRR = 0.84 [95% C.I.= 0.74, 0.96, P = 0.01]) were associated with a reduced risk of clinical malaria over one year of morbidity surveillance.

Conclusion

The data from this study support the view that a multivalent vaccine involving different antigens is most likely to be more effective than a monovalent one. Functional assays, like the parasite growth inhibition assay will be necessary to confirm if these associations reflect functional roles of antibodies to MSP1-3D7 and AMA1-3D7 in this population.  相似文献   

16.
The evidence of protection afforded by red blood cell polymorphisms against either clinical malaria or Plasmodium falciparum blood levels varies with the study site and the type of malaria transmission. Nevertheless, no clear implication of an antibody-related effect has yet been established in the protection related to red blood cell polymorphisms. We performed a prospective study, where plasma IgG and IgG subclasses directed to recombinant proteins from the merozoite surface protein 2 (MSP2/3D7 and MSP2/FC27) and the ring-infected erythrocyte surface antigen (RESA) were determined in a cohort of 413 Senegalese children before the annual malaria transmission season. The antibody response was dependent on age, and to a lesser extent, on the village of residence. IgG3 responders to all proteins, IgG responders to RESA and MSP2/3D7, as well as IgG2 to RESA and IgG1 responders to MSP2/3D7, presented enhanced mean values of parasite density, as evaluated during an 18-month follow-up. The levels of IgG and IgG3 to MSP2/3D7 were negatively associated with the risk of occurrence of a malaria attack during the following transmission season. Compared to normal children, sickle cell trait carriers presented lower levels of IgG to MSP2/3D7. Similarly, G6PD A- girls had lower levels of IgG and IgG3 to MSP2/FC27 than did G6PD normal girls. The impact of these particular genetic polymorphisms on the modulation of the antibody response is discussed.  相似文献   

17.
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite – MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors – ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.  相似文献   

18.

Background

Heterogeneity in malaria exposure complicates survival analyses of vaccine efficacy trials and confounds the association between immune correlates of protection and malaria infection in longitudinal studies. Analysis may be facilitated by taking into account the variability in individual exposure levels, but it is unclear how exposure can be estimated at an individual level.

Method and Findings

We studied three cohorts (Chonyi, Junju and Ngerenya) in Kilifi District, Kenya to assess measures of malaria exposure. Prospective data were available on malaria episodes, geospatial coordinates, proximity to infected and uninfected individuals and residence in predefined malaria hotspots for 2,425 individuals. Antibody levels to the malaria antigens AMA1 and MSP1142 were available for 291 children from Junju. We calculated distance-weighted local prevalence of malaria infection within 1 km radius as a marker of individual''s malaria exposure. We used multivariable modified Poisson regression model to assess the discriminatory power of these markers for malaria infection (i.e. asymptomatic parasitaemia or clinical malaria). The area under the receiver operating characteristic (ROC) curve was used to assess the discriminatory power of the models. Local malaria prevalence within 1 km radius and AMA1 and MSP1142 antibodies levels were independently associated with malaria infection. Weighted local malaria prevalence had an area under ROC curve of 0.72 (95%CI: 0.66–0.73), 0.71 (95%CI: 0.69–0.73) and 0.82 (95%CI: 0.80–0.83) among cohorts in Chonyi, Junju and Ngerenya respectively. In a small subset of children from Junju, a model incorporating weighted local malaria prevalence with AMA1 and MSP1142 antibody levels provided an AUC of 0.83 (95%CI: 0.79–0.88).

Conclusion

We have proposed an approach to estimating the intensity of an individual''s malaria exposure in the field. The weighted local malaria prevalence can be used as individual marker of malaria exposure in malaria vaccine trials and longitudinal studies of natural immunity to malaria.  相似文献   

19.
Plasmodium falciparum merozoite surface is specifically labelledwith a neoglycoprotein bearing N-acetylgluco-samine (GlcNAc)residues in a sugar-dependent manner, as shown by affinity cytochemistryin fluorescence and electron microscopy. To ascertain the natureof the sugar receptor, merozoite proteins were blotted and testedby a two-step method using biotinylated GlcNAc—bovineserum albumin (BSA) and streptavidin—peroxidase conjugate.Three parasite proteins were specifically revealed and designatedas Pf 120, Pf 83 and Pf 45 GlcNAc-binding proteins. These proteinsbind to a gel substituted with GlcNAc and are specifically elutedwith 300 mM GlcNAc. Using a rabbit antiserum raised againstPf 83, the Pf 120 GlcNAc-binding protein, in addition to Pf83, was labelled by Western blotting. Comparative analyses withan antibody against the Pf 83 MSP derived from the P.falciparummerozoite surface protein (Pf MSP) indicated that the Pf 83GlcNAc-binding protein is not related to the fragment of thePf MSP antigen. Similarly, the Pf 83 GlcNAc-binding proteinis not related to the apical membrane antigen 1 (AMA 1) whichalso has the same molecular mass. Therefore the Pf 120, Pf 83and Pf 45 GlcNAc-binding proteins which are located on the merozoitesurface and recognize GlcNAc residues could be involved in thebinding of merozoites to the glycoconjugates of the surfaceof the red blood cells. GlcNAc lectin neoglycoprotein Plasmodium falciparum red blood cell  相似文献   

20.
A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP142, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30) volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP142. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.

Trial Registration

Clinicaltrials.gov NCT00889616  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号