首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. ‘Genetic rescue’ techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of ‘genetic rescue’ using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.  相似文献   

2.
The degree to which, and rapidity with which, inbreeding depression can be purged from a population has important implications for conservation biology, captive breeding practices, and invasive species biology. The degree and rate of purging also informs us regarding the genetic mechanisms underlying inbreeding depression. We examine the evolution of mean survival and inbreeding depression in survival following serial inbreeding in a seed-feeding beetle, Stator limbatus, which shows substantial inbreeding depression at all stages of development. We created two replicate serially inbred populations perpetuated by full-sib matings and paired with outbred controls. The genetic load for the probability that an egg produces an adult was purged at approximately 0.45-0.50 lethal equivalents/generation, a reduction of more than half after only three generations of sib-mating. After serial inbreeding we outcrossed all beetles then measured (1) larval survival of outcrossed beetles and (2) inbreeding depression. Survival of outcrossed beetles evolved to be higher in the serially inbred populations for all periods of development. Inbreeding depression and the genetic load were significantly lower in the serially inbred than control populations. Inbreeding depression affecting larval survival of S. limbatus is largely due to recessive deleterious alleles of large effect that can be rapidly purged from a population by serial sib-mating. However, the effectiveness of purging varied among the periods of egg/larval survival and likely varies among other unstudied fitness components. This study presents novel results showing rapid and extensive purging of the genetic load, specifically a reduction of as much as 72% in only three generations of sib-mating. However, the high rate of extinction of inbred lines, despite the lines being reared in a benign laboratory environment, indicates that intentional purging of the genetic load of captive endangered species will not be practical due to high rates of subpopulation extinction.  相似文献   

3.
张伟  张帅  孔祥波  赵莉蔺 《生态学报》2014,34(14):3932-3936
近交系的培育是研究动物遗传学特性的基础。为了研究外来入侵种松材线虫的遗传学基础,选择了中国浙江舟山松材线虫种群和美国宾夕法尼亚州松材线虫种群为研究对象,培育了近交系,并比较了近交系培育前后繁殖力的差异。结果表明:美国宾夕法尼亚州松材线虫种群近交系培育得到8个株系,中国浙江舟山松材线虫种群近交系培育得到4个株系,连续近交对松材线虫的繁殖力未造成显著影响。其中,在近交系培育前后,中国浙江舟山松材线虫种群株系群体繁殖力均优于美国宾夕法尼亚州松材线虫种群。此近交系的培育为进一步研究松材线虫入侵的遗传机制奠定了基础。  相似文献   

4.
Inbreeding depression is known to vary greatly between populations and among species. Some of this variation is due to differences in genetic load between populations, while some is due to differences in the environment (e.g. local weather conditions) or demography of the population (e.g. age structure and breeding experience) in which inbreeding is expressed. Although the effects of these factors in isolation are well understood, there is still relatively little known about the interface between inbreeding on one hand, and environment and demography on the other in wild populations. We examined how environmental and demographic factors mediated the effects of inbreeding in a threatened species of bird. The Stewart Island robin, Petroica australis rakiura, has been subjected to a prolonged bottleneck for over 150 years. A complete pedigree of a reintroduced island population, extending back seven seasons to its founding, was available for analysis along with survival data (at the level of the brood) obtained from intensive monitoring over two breeding seasons. We found no strong support that the degree to which a brood was inbred affected its survival at either the hatching, fledging or recruitment stages. The inbreeding coefficient of the mother did have an effect on brood survival when analysed over all three life history stages, but only as a result of an interaction with female age, with broods of one‐year‐old inbred females suffering greater mortality than those of older inbred females. Although habitat type, temperature, rainfall and year were the best predictors of brood survival for most life history stages, their effects were weak and there were no interactions with inbreeding. Furthermore, there was no strong evidence of inbreeding depression associated with two periods of severe weather. This population is atypical in that inbreeding depression appears to be weak even under severe environmental conditions, and may be indicative that this bottlenecked population has either reduced genetic load or has fixed deleterious alleles.  相似文献   

5.
Selection for increased morphometric shape (ratio of wing length to thorax width) was compared between control (nonbottlenecked) populations and bottlenecked populations founded with two male–female pairs of flies. Contrary to neutral expectation, selectional response was not reduced in bottlenecked populations, and the mean realized heritabilities and additive genetic variances were higher for the bottlenecked lines than for the nonbottlenecked lines. Additive genetic variances based on these realized heritabilities were consistent with independent estimates of genetic variances based on parent–offspring covariances. Joint scaling tests applied to the crosses between selected lines and their controls revealed significant nonadditive components of genetic variance in the ancestor, which were not detected in the crosses involving bottlenecked lines. The nonbottlenecked lines responded principally by changes in one trait or the other (wing length or thorax width) but not in both, and regardless of which trait responded, larger trait size was dominant and epistatic to smaller size. Stabilizing selection for morphometric shape in the ancestor likely molded the genetic architecture to include nonadditive genetic effects.  相似文献   

6.
The fragmentation of populations is an increasingly important problem in the conservation of endangered species. Under these conditions, rare migration events may have important effects for the rescue of small and inbred populations. However, the relevance of such migration events to genetically depauperate natural populations is not supported by empirical data. We show here that the genetic diversity of the severely bottlenecked and geographically isolated Scandinavian population of grey wolves (Canis lupus), founded by only two individuals, was recovered by the arrival of a single immigrant. Before the arrival of this immigrant, for several generations the population comprised only a single breeding pack, necessarily involving matings between close relatives and resulting in a subsequent decline in individual heterozygosity. With the arrival of just a single immigrant, there is evidence of increased heterozygosity, significant outbreeding (inbreeding avoidance), a rapid spread of new alleles and exponential population growth. Our results imply that even rare interpopulation migration can lead to the rescue and recovery of isolated and endangered natural populations.  相似文献   

7.
Breeding designs for recombinant inbred advanced intercross lines   总被引:2,自引:0,他引:2       下载免费PDF全文
Rockman MV  Kruglyak L 《Genetics》2008,179(2):1069-1078
Recombinant inbred lines derived from an advanced intercross, in which multiple generations of mating have increased the density of recombination breakpoints, are powerful tools for mapping the loci underlying complex traits. We investigated the effects of intercross breeding designs on the utility of such lines for mapping. The simplest design, random pair mating with each pair contributing exactly two offspring to the next generation, performed as well as the most extreme inbreeding avoidance scheme at expanding the genetic map, increasing fine-mapping resolution, and controlling genetic drift. Circular mating designs offer negligible advantages for controlling drift and exhibit greatly reduced map expansion. Random-mating designs with variance in offspring number are also poor at increasing mapping resolution. Given equal contributions of each parent to the next generation, the constraint of monogamy has no impact on the qualities of the final population of inbred lines. We find that the easiest crosses to perform are well suited to the task of generating populations of highly recombinant inbred lines.  相似文献   

8.
Natural populations are becoming increasingly fragmented which is expected to affect their viability due to inbreeding depression, reduced genetic diversity and increased sensitivity to demographic and environmental stochasticity. In small and highly inbred populations, the introduction of only a few immigrants may increase vital rates significantly. However, very few studies have quantified the long‐term success of immigrants and inbred individuals in natural populations. Following an episode of natural immigration to the isolated, severely inbred Scandinavian wolf (Canis lupus) population, we demonstrate significantly higher pairing and breeding success for offspring to immigrants compared to offspring from native, inbred pairs. We argue that inbreeding depression is the underlying mechanism for the profound difference in breeding success. Highly inbred wolves may have lower survival during natal dispersal as well as competitive disadvantage to find a partner. Our study is one of the first to quantify and compare the reproductive success of first‐generation offspring from migrants vs. native, inbred individuals in a natural population. Indeed, our data demonstrate the profound impact single immigrants can have in small, inbred populations, and represent one of very few documented cases of genetic rescue in a population of large carnivores.  相似文献   

9.
The introduction of unrelated conspecifics into captive groups of primate species is desirable to inhibit inbreeding. However, for many species, such groups increasingly represent highly inbred isolate populations that are analogous to regionally isolated populations of the same species among whom the effects of outcrossing on fitness are unknown. A study of potentially adverse effects of cross-breeding between regionally isolated populations of rhesus macaques was conducted to assess the maximum advantage or disadvantage to be expected for cross-breeding such populations of other cercopithecoid primates. For this purpose, the infant weights and rates of growth of hybrid Chinese/Indian rhesus macaques were compared to those of their nonhybrid Indian peers and to those of consanguineously inbred Indian rhesus macaques from several other captive breeding groups. Neither adverse nor advantageous effects of such hybridization were detected, suggesting that outcrossing between isolates of other cercopithecoid primates with a similar social structure and mating pattern should not affect the fitness of resulting offspring. Since levels of inbreeding are roughly inversely proportional to levels of genetic diversity within populations, such outcrossing should be intensified by zoos and other captive breeding centers to ensure the continued survival of captive species, especially those that are endangered or otherwise irreplaceable.  相似文献   

10.
 Strawberry genotypes selected for superior fruit yield or chosen at random from first-generation self, full-sib, and half-sib populations were crossed to provide second-generation inbred progenies and composite cross-fertilized control populations. Mean yields for inbred offspring from crosses among selected parents exceeded those from the offspring of unselected parents by 87%, 23%, and 37% for self, full-sib, and half-sib populations, respectively; yields for offspring from unrelated crosses among selected parents were 54% larger than those for crosses among unselected parents. Selection for yield also resulted in significant correlated response for fruit number and plant diameter. Mean yields for second-generation half-sib and full-sib offspring from selected parents were greater than those for offspring from the unselected but non-inbred control population. This suggests that selection can be a powerful force in counteracting most of the inbreeding depression expected in cross-fertilized strawberry breeding programs. Selection treatment× inbreeding rate interactions were non-significant for all traits; thus, selection among partially inbred offspring did not have a large effect on the rate of genetic progress. Differential realized selection intensity among individuals with differing levels of homozygosity accumulated due to inbreeding is suggested as the most likely explanation for the absence of association between pedigree inbreeding coefficients and cross performance detected previously in strawberry. Received: 21 July 1996 / Accepted: 7 March 1997  相似文献   

11.
12.
Individuals are generally predicted to avoid inbreeding because of detrimental fitness effects. However, several recent studies have shown that limited inbreeding is tolerated by some vertebrate species. Here, we examine the costs and benefits of inbreeding in a largely polygynous rodent, the yellow-bellied marmot (Marmota flaviventris). We use a pedigree constructed from 8 years of genetic data to determine the relatedness of all marmots in our study population and examine offspring survival, annual male reproductive success, relatedness between breeding pairs and the effects of group composition on likelihood of male reproduction to assess inbreeding in this species. We found decreased survival in inbred offspring, but equal net reproductive success among males that inbred and those that avoided it. Relatedness between breeding pairs was greater than that expected by chance, indicating that marmots do not appear to avoid breeding with relatives. Further, male marmots do not avoid inbreeding: males mate with equal frequency in groups composed of both related and unrelated females and in groups composed of only female relatives. Our results demonstrate that inbreeding can be tolerated in a polygynous species if the reproductive costs of inbreeding are low and individuals that mate indiscriminately do not suffer decreased reproductive success.  相似文献   

13.
It is crucial to understand the genetic health and implications of inbreeding in wildlife populations, especially of vulnerable species. Using extensive demographic and genetic data, we investigated the relationships among pedigree inbreeding coefficients, metrics of molecular heterozygosity and fitness for a large population of endangered African wild dogs (Lycaon pictus) in South Africa. Molecular metrics based on 19 microsatellite loci were significantly, but modestly correlated to inbreeding coefficients in this population. Inbred wild dogs with inbreeding coefficients of ??0.25 and subordinate individuals had shorter lifespans than outbred and dominant contemporaries, suggesting some deleterious effects of inbreeding. However, this trend was confounded by pack-specific effects as many inbred individuals originated from a single large pack. Despite wild dogs being endangered and existing in small populations, findings within our sample population indicated that molecular metrics were not robust predictors in models of fitness based on breeding pack formation, dominance, reproductive success or lifespan of individuals. Nonetheless, our approach has generated a vital database for future comparative studies to examine these relationships over longer periods of time. Such detailed assessments are essential given knowledge that wild canids can be highly vulnerable to inbreeding effects over a few short generations.  相似文献   

14.
The increasingly common phenomenon of habitat fragmentation raises the probability of pollination failure in a number of species, as both pollen quantity and quality often decrease as populations become isolated. We experimentally investigated whether pollen was limiting reproductive success of the endangered shrub Buxus balearica in five populations, two continental and three insular, during 2002 and 2003. Pollen limitation varied among populations and years, but such variation was not related to density or degree of isolation. All populations showed inbreeding depression at different phases of the reproductive cycle, although its effects differed greatly among sites. Between-population outcrossing did not have a consistent effect on several components of fitness. The highest levels of inbreeding depression – detected at the level of fruit and seed set- occurred at the smallest and least fecund populations from each region. This indicates that further fragmentation of the populations of this already endangered species could certainly threaten their survival.  相似文献   

15.
Wild endangered populations can suffer fromadverse effects on fitness due to inbreedingand environmental stress. Often, both geneticand environmental stress factors may be presentin populations at the same time. Thereforeknowledge on the potential interactions betweenthese factors is important for the conservationof wild populations. When measuring fitness(e.g. survival and reproductive potential) ofindividuals in the laboratory, and in nature,inbreeding by environment interactions are nowbeing reported more often. The increased focuson environmental dependency of inbreedingdepression will therefore enable conservationbiologists to include this knowledge in themanagement of endangered populations in thewild. In this study, the effects ofenvironmental stress and inbreeding on fitnessare estimated in a laboratory population ofDrosophila buzzatii. Random- or full-sibmating were used to generate independentreplicate lines of four different inbreedinglevels (F = 0, F = 0.25, F = 0.50, F = 0.672)in four different environments. Theenvironments were thermal and dimethoate stressseparately and in combination, as well as anon-stressful control environment. Twoexperiments were carried out to measureproductivity (a multiplicative measure offecundity and viability) using a full factorialdesign. In the first experiment, productivitywas estimated for all lines and inbreedinglevels in the environment in which flies wereinbred and reared for several generations. Inthe second experiment, productivity of thelines reared in the control environment wastested in all four environments and for allinbreeding levels. Our results show asignificant effect of inbreeding andenvironmental stress on productivity in bothexperiments and the effect increased when flieswere exposed to novel environmental conditions.Productivity was not affected by theinteraction between inbreeding andenvironmental stress when flies were tested inthe environments in which they were reared,whereas there was a tendency towards a stressby inbreeding interaction when flies wereexposed to novel environments. The variance andthe coefficient of variation in productivitywere each affected by environmental stress andinbreeding, indicating that environmentalconditions as well as genetic background areimportant for variation in productivity.However, the two measures of variation oftenshowed opposite trends. The results obtained inthis study indicate that the environmentalconditions under which inbreeding occurs areimportant. This is relevant for the maintenanceand management of populations in captivity andin relation to reintroduction of endangeredspecies in nature.  相似文献   

16.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

17.
For two populations of Alaskan steelhead (Oncorhynchus mykiss) of common ancestry we evaluated effects of inbreeding in second-generation descendants of wild fish by comparing progeny of full-sibling matings to those of non-inbred controls to determine if a single event of close inbreeding has significant effects on survival and growth in captivity or the wild. In captivity, both survival and size were highly variable between inbred and control types within each line and among the five broods during five periods of freshwater culture. However, no consistent patterns of inbreeding enhancement or depression between types within lines across years were evident. In contrast, in the wild marine environment, 34 of 34 pairwise comparisons between inbred and control types in body size of returning adults after 2 or 3 years at liberty in the ocean were consistent with inbreeding depression with significant inbreeding depression varying from 2.9% for female length to 20.0% for female weight. Survival of marked juveniles (smolts) to adults in the wild marine environment was consistently and significantly lower in inbred types for both lines, for an average inbreeding depression of 78.8%. The results underscore the potential problems that can arise from using protective culture technologies, including captive broodstocks, to supplement endangered populations, and they highlight the genetic hazards that can be faced by small wild populations. This study demonstrates that high natural mortality or selection increases the amount of inbreeding depression detected in survival. Inbreeding effects on survival and growth in captivity can be poor indicators of survival and growth in a wild marine environment.  相似文献   

18.
Inbreeding is expected to decrease the heritability within populations. However, results from empirical studies are inconclusive. In this study, we investigated the effects of three breeding treatments (fast and slow rate of inbreeding - inbred to the same absolute level - and a control) on heritability, phenotypic, genetic and environmental variances of sternopleural bristle number in Drosophila melanogaster. Heritability, and phenotypic, genetic and environmental variances were estimated in 10 replicate lines within each of the three treatments. Standard least squares regression models and Bayesian methods were used to analyse the data. Heritability and additive genetic variance within lines were higher in the control compared with both inbreeding treatments. Heritabilities and additive genetic variances within lines were higher in slow compared with fast inbred lines, indicating that slow inbred lines retain more evolutionary potential despite the same expected absolute level of inbreeding. The between line variance was larger with inbreeding and more than twice as large in the fast than in the slow inbred lines. The different pattern of redistribution of genetic variance within and between lines in the two inbred treatments cannot be explained invoking the standard model based on selective neutrality and additive gene action. Environmental variances were higher with inbreeding, and more so with fast inbreeding, indicating that inbreeding and the rate of inbreeding affect environmental sensitivity. The phenotypic variance decreased with inbreeding, but was not affected by the rate of inbreeding. No inbreeding depression for mean sternopleural bristle number was observed in this study. Considerable variance between lines in additive genetic variance within lines was observed, illustrating between line variation in evolutionary potential.  相似文献   

19.
? Premise of the study: Inbreeding depression is a major evolutionary force and an important topic in conservation genetics because habitat fragmentation leads to increased inbreeding in the populations of many species. Crosses between populations may restore heterozygosity, resulting in increased performance (heterosis), but may also lead to the disruption of coadapted gene complexes and to decreased performance (outbreeding depression). ? Methods: We investigated the effects of selfing and of within and between population crosses on reproduction and the performance of two generations of offspring of the declining grassland plant Saxifraga granulata (Saxifragaceae). We also subjected the first generation of offspring to a fertilization and two stress treatments (competition and defoliation) to investigate whether the effects of inbreeding and interpopulation gene flow depend on environmental conditions. ? Key results: Inbreeding depression affected all traits in the F(1) generation (δ = 0.07-0.55), but was stronger for traits expressed late during development and varied among families. The adaptive plasticity of offspring from selfing and from interpopulation crosses in response to nutrient addition was reduced. Outbreeding depression was also observed in response to stress. Multiplicative fitness of the F(2) generation after serial inbreeding was extremely low (δ > 0.99), but there was heterosis after crossing inbred lines. Outbreeding depression was not observed in the F(2). ? Conclusions: Continuous inbreeding may drastically reduce the fitness of plants, but effects may be environment-dependent. When assessing the genetic effects of fragmentation and interpopulation crosses, the possible effects on the mean performance of offspring and on its adaptive plasticity should be considered.  相似文献   

20.
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. The level of inbreeding depression is, however, expected to be low in such a highly selfing species, compared with an outcrosser like C. remanei. To investigate these issues, we measured life-history traits in the progeny of inbred versus outcrossed C. elegans and C. remanei individuals derived from recently isolated natural populations. In addition, we maintained inbred lines of C. remanei through 13 generations of full-sibling mating. Highly inbred C. remanei showed dramatic reductions in brood size and relative fitness compared to outcrossed individuals, with evidence of both direct genetic and maternal-effect inbreeding depression. This decline in fitness accumulated over time, causing extinction of nearly 90% of inbred lines, with no evidence of purging of deleterious mutations from the remaining lines. In contrast, pure strains of C. elegans performed better than crosses between strains, indicating outbreeding depression. The results are discussed in relation to the evolution of androdioecy and the effect of mating system on the level of inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号