首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutant Ralstonia eutropha H1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-type R. eutropha H16 but similar growth behavior. Insertion of Tn5 was localized in the pdhL gene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence of R. eutropha H16, observations were verified and further detailed analyses and experiments were done. In silico genome analysis revealed that R. eutropha possesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5 in pdhL of mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhL deletion mutant of R. eutropha exhibited the same phenotype as the Tn5 mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5 mutant H1482. However, insertion of Tn5 or deletion of pdhL decreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components of R. eutropha H16 or of other bacteria, like Burkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component of B. cepacia possesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations of R. eutropha H1482 to the loss of PdhL on the cellular level.  相似文献   

4.
The major immediate-early (MIE) gene locus of human cytomegalovirus (HCMV) is the master switch that determines the outcomes of both lytic and latent infections. Here, we provide evidence that alteration in the splicing of HCMV (Towne strain) MIE genes affects infectious-virus replication, movement through the cell cycle, and cyclin-dependent kinase activity. Mutation of a conserved 24-nucleotide region in MIE exon 4 increased the abundance of IE1-p38 mRNA and decreased the abundance of IE1-p72 and IE2-p86 mRNAs. An increase in IE1-p38 protein was accompanied by a slight decrease in IE1-p72 protein and a significant decrease in IE2-p86 protein. The mutant virus had growth defects, which could not be complemented by wild-type IE1-p72 protein in trans. The phenotype of the mutant virus could not be explained by an increase in IE1-p38 protein, but prevention of the alternate splice returned the recombinant virus to the wild-type phenotype. The lower levels of IE1-p72 and IE2-p86 proteins correlated with a delay in early and late viral gene expression and movement into the S phase of the cell cycle. Mutant virus-infected cells had significantly higher levels of cdk-1 expression and enzymatic activity than cells infected with wild-type virus. The mutant virus induced a round-cell phenotype that accumulated in the G(2)/M compartment of the cell cycle with condensation and fragmentation of the chromatin. An inhibitor of viral DNA synthesis increased the round-cell phenotype. The round cells were characteristic of an abortive viral infection.  相似文献   

5.
The semidominant gibberellin-insensitive (gai) mutant of Arabidopsis thaliana shows impairment in multiple responses to the plant hormone gibberellin A3, which include effects on seed germination, stem elongation, apical dominance, and rapid flowering in short days. Results presented here show that the gai mutation also interferes with development of fertile flowers in continuous light. Mu-tagenesis of the gai mutant resulted in recovery of 17 independent mutants in which the gibberellin-insensitive phenotype is partially or completely suppressed. Sixteen of the suppressor mutations act semidominantly to restore gibberellin responsiveness. One representative of this class, the gar1 mutation, could not be genetically separated from the gai locus and is proposed to cause inactivation of the gai gene. The exceptional gar2 mutation partially suppresses the gai phenotype, is completely dominant, and is not linked to the gai locus. The gar2 mutation may define a new gene involved in gibberellin signaling. A recessive allele of the spindly (SPY) locus, spy-5, was also found to partially suppress the gai mutant phenotype.  相似文献   

6.
Specific inhibition of P-glycoprotein (Pgp) expression, which is encoded by multidrug resistance gene-1 (MDR1), is considered a well-respected strategy to overcome multidrug resistance (MDR). Deoxyribozymes (DRz) are catalytic nucleic acids that could cleave a target RNA in sequence-specific manner. However, it is difficult to select an effective target site for DRz in living cells. In this study, target sites of DRz were screened according to MDR1 mRNA secondary structure by RNA structure analysis software. Twelve target sites on the surface of MDR1 mRNA were selected. Accordingly, 12 DRzs were synthesized and their suppression effect on the MDR phenotype in breast cancer cells was confirmed. The results showed that 4 (DRz 2, 3, 4, 9) of the 12 DRzs could, in a dose-dependent response, significantly suppress MDR1 mRNA expression and restore chemosensitivity in breast cancer cells with MDR phenotype. This was especially true of DRz 3, which targets the 141 site purine-pyrimidine dinucleotide. Compared with antisense oligonucleotide or anti-miR-27a inhibitor, DRz 3 was more efficient in suppressing MDR1 mRNA and Pgp protein expression or inhibiting Pgp function. The chemosensitivity assay also proved DRz 3 to be the best one to reverse the MDR phenotype. The present study suggests that screening targets of DRzs according to MDR1 mRNA secondary structure could be a useful method to obtain workable ones. We provide evidence that DRzs (DRz 2, 3, 4, 9) are highly efficient at reversing the MDR phenotype in breast carcinoma cells and restoring chemosensitivity.  相似文献   

7.
8.
CTL-mediated selection for loss of expression of Mta by H-2-heterozygous SV40-transformed mouse fibroblasts (line 24SV) produced an unusual phenotypic class of maternally transmitted Ag negative mutants defective in both MHC expression and in anti-viral activity. Severely reduced surface expression of class I MHC Ag from multiple loci of both haplotypes correlated with low levels of MHC H chain and beta 2-microglobulin mRNA. Inasmuch as IFN can up-regulate class I expression and some fibroblasts elaborate autocrine IFN-beta, we examined whether IFN could restore wild-type expression of class I MHC Ag. However, IFN could not restore wild-type expression. Moreover, the fold-increases in class I Ag and mRNA expression were significantly reduced in mutant cells compared to wild-type cells. These results suggested that the mutants might have generalized defects in IFN response. Inasmuch as the induction of an anti-viral state is a hallmark of IFN responses, we exposed cells to IFN-alpha, -beta, or -gamma and challenged with virus. 24SV cells, exposed to any of the three IFNs, were completely protected from destruction by vesicular stomatitis, mengovirus or respiratory syncytial viruses. In contrast, MHC and anti-viral defective mutants could not be protected from virus-induced lysis by any IFN. Somatic cell hybridization analyses indicated that both basal MHC and IFN-inducible phenotypes were recessive to wild-type, and that a trans-acting regulatory factor required for basal MHC expression is defectively expressed in the mutants. Such a factor may integrate the organismal response to virus infection, encompassing both immune and nonimmune anti-viral responses.  相似文献   

9.
10.
11.
Hung WF  Chen LJ  Boldt R  Sun CW  Li HM 《Plant physiology》2004,135(3):1314-1323
Using a transgene-based screening, we previously isolated several Arabidopsis mutants defective in protein import into chloroplasts. Positional cloning of one of the loci, CIA1, revealed that CIA1 encodes Gln phosphoribosyl pyrophosphate amidotransferase 2 (ATase2), one of the three ATase isozymes responsible for the first committed step of de novo purine biosynthesis. The cia1 mutant had normal green cotyledons but small and albino/pale-green mosaic leaves. Adding AMP, but not cytokinin or NADH, to plant liquid cultures partially complemented the mutant phenotypes. Both ATase1 and ATase2 were localized to chloroplasts. Overexpression of ATase1 fully complemented the ATase2-deficient phenotypes. A T-DNA insertion knockout mutant of the ATase1 gene was also obtained. The mutant was indistinguishable from the wild type. A double mutant of cia1/ATase1-knockout had the same phenotype as cia1, suggesting at least partial gene redundancy between ATase1 and ATase2. Characterizations of the cia1 mutant revealed that mutant leaves had slightly smaller cell size but only half the cell number of wild-type leaves. This phenotype confirms the role of de novo purine biosynthesis in cell division. Chloroplasts isolated from the cia1 mutant imported proteins at an efficiency less than 50% that of wild-type chloroplasts. Adding ATP and GTP to isolated mutant chloroplasts could not restore the import efficiency. We conclude that de novo purine biosynthesis is not only important for cell division, but also for chloroplast biogenesis.  相似文献   

12.
Saccharomyces cerevisiae mutants lacking the structure-specific nuclease Rad27 display an enhancement in recombination that increases as sequence length decreases, suggesting that Rad27 preferentially restricts recombination between short sequences. Since wild-type alleles of both RAD27 and its human homologue FEN1 complement the elevated short-sequence recombination (SSR) phenotype of a rad27-null mutant, this function may be conserved from yeast to humans. Furthermore, mutant Rad27 and FEN-1 enzymes with partial flap endonuclease activity but without nick-specific exonuclease activity partially complement the SSR phenotype of the rad27-null mutant. This suggests that the endonuclease activity of Rad27 (FEN-1) plays a role in limiting recombination between short sequences in eukaryotic cells.  相似文献   

13.
14.
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA(4) in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA(4) content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs.  相似文献   

15.
Phytochrome‐interacting factor 1 (PIF1) inhibits light‐dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high‐level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light‐dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light‐dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high‐level expression of PIF1 mRNA in imbibed seeds.  相似文献   

16.
The control of phytochrome A expression at the protein and mRNA levels was investigated in wild-type and phyB-1 mutant sorghum ( Sorghum bicolor [L.] Moench). PHYA mRNA abundance follows a diurnal rhythm in both genotypes, with maximal accumulation near the latter part of the light period. PHYA mRNA is more abundant in the phyB-1 mutant. The level of PHYA message correlates with both R : FR and photon flux density in wild-type, but only with photon flux density in the phyB-1 mutant. The differences in mRNA abundance are reflected in the level of phyA protein, which is elevated in the phyB-1 mutant and accumulates under low photon flux density. During de-etiolation, PHYA message accumulation is initially repressed solely by a very low fluence response (VLFR) presumably mediated by phyA. The phyB-mediated low fluence response maintains the repression of accumulation past the time controlled by the VLFR. With repetitive photoperiods, the transition from the etiolated growth form to autotrophic competency is accompanied by a transition from light-induced reduction of PHYA mRNA abundance to enhanced accumulation during the light period. The loss of phyB function allows partial de-repression of PHYA message accumulation under repetitive photoperiods, resulting in plants deficient in phyB but enriched in phyA. The modification of PHYA mRNA and protein levels in the phyB-1 mutant documented in this study may help clarify the molecular basis of the phyB-1 phenotype. The tailoring of phyA abundance in wild-type to the time of day and shade signals suggests a plastic role for this pigment in controlling development in light-grown plants.  相似文献   

17.
Mutant hybridoma-myeloma cell lines that are defective in immunoglobulin production are expected to be useful for defining the molecular requirements of immunoglobulin gene expression. The analysis of such mutants would be greatly facilitated if they could be mapped by marker rescue, i.e., by identifying the segments of wild-type DNA that can restore the normal phenotype by homologous recombination with the mutant chromosomal immunoglobulin gene. To assess the feasibility of this type of mapping, we have measured the efficiency with which fragments of wild-type DNA recombine with a mutant hybridoma immunoglobulin gene and restore normal immunoglobulin production. We found that most if not all recombinants were detectable 2 days after DNA transfer and that the frequency of gene restoration increased with increasing length of the transferred mu gene fragments, between 1.2 and 9.5 kilobases. These results indicate that the available technology should be adequate to map mutations in the mu gene to within approximately 1 kilobase.  相似文献   

18.
The small G-protein superfamily is an evolutionarily conserved group of GTPases that regulate diverse signalling pathways including pathways for growth and development in eukaryotes. Previously, we showed that dominant active mutation in the unique Ras gene (DARas) of the fungal phytopathogen Colletotrichum trifolii displays a nutrient-dependent phenotype affecting polarity, growth and differentiation. Signalling via the MAP kinase pathway is significantly impaired in this mutant as well. Here we describe the cloning and functional characterization of Rac (Ct-Rac1), a member of the Rho family of G proteins. Ct-Rac1 expression is downregulated by DARas under limiting nutrition. Co-expression of DARas with dominant active Rac (DARac) stimulates MAPK activation and restores the wild-type phenotype. Inhibition of MAPK activation suppresses phenotypic restoration suggesting Rac-mediated MAPK activation is responsible for reversion to the wild-type phenotype. We also examined the role of reactive oxygen species (ROS) in these genetic backgrounds. The DARas mutant strain generates high levels of ROS as determined by DCFH-DA fluorescence. Co-expression with DNRac decreases ROS generation to wild-type levels and restores normal fungal growth and development. Pretreatment of DARas with antioxidants or a cytosolic phospholipase A2 inhibitor also restores the wild-type phenotype. These findings suggest that Ras-mediated ROS generation is dependent on a Rac-cPLA(2)-linked signalling pathway. Taken together, this study provides evidence that Rac functions to restore the hyphal morphology of DARas by regulating MAPK activation and intracellular ROS generation.  相似文献   

19.
S Mita  H Hirano    K Nakamura 《Plant physiology》1997,114(2):575-582
Expression of a beta-amylase gene of Arabidopsis thaliana (AT beta-Amy) is regulated by sugars. We identified a mutant, hba1, in which the level of expression of AT beta-Amy in leaves of plants that had been grown in a medium with 2% sucrose was significantly higher than that in wild-type plants. Higher that wild-type levels of beta-amylase in hba1 plants depended on the presence of 1 to 2% sucrose or 1% glucose in the medium, whereas leaves of mutant plants grown with higher levels of sugars had beta-amylase activities similar to those in leaves of wild-type plants. The hba1 phenotype was recessive and did not affect levels of sugars and starch in leaves. It is proposed that expression of AT beta-Amy is regulated by a combination of both positive and negative factors, dependent on the level of sugars, and that HBA1 might function to maintain low-level expression of AT beta-Amy until the level of sugars reaches some high level. Results of crosses of hba1 plants with transgenic plants that harbored an AT beta-Amy:GUS transgene with 1587 bp of the 5'-upstream region suggested that HBA1 affects expressions of AT beta-Amy in trans. The hba1 plants also had growth defects and elevated levels of anthocyanin in their petioles. However, sugar-related changes in levels of several mRNAs other than beta-amylase mRNA were unaffected in hba1 plants, suggesting that only a subset of sugar-regulated genes is under the control HBA1.  相似文献   

20.
The Rsp5 ubiquitin ligase plays a role in many cellular processes including the biosynthesis of unsaturated fatty acids. The PIS1 (phosphatidylinositol synthase gene) encoding the enzyme Pis1p which catalyses the synthesis of phosphatidylinositol from CDP-diacyglycerol and inositol, was isolated in a screen for multicopy suppressors of the rsp5 temperature sensitivity phenotype. Suppression was allele non-specific. Interestingly, expression of PIS1 was 2-fold higher in the rsp5 mutant than in wild-type yeast, whereas the introduction of PIS1 in a multicopy plasmid increased the level of Pis1p 6-fold in both backgrounds. We demonstrate concomitantly that the expression of INO1 (inositol phosphate synthase gene) was also elevated approx. 2-fold in the rsp5 mutant as compared with the wild-type, and that inositol added to the medium improved growth of rsp5 mutants at a restrictive temperature. These results suggest that enhanced phosphatidylinositol synthesis may account for PIS1 suppression of rsp5 defects. Analysis of lipid extracts revealed the accumulation of saturated fatty acids in the rsp5 mutant, as a consequence of the prevention of unsaturated fatty acid synthesis. Overexpression of PIS1 did not correct the cellular fatty acid content; however, saturated fatty acids (C(16:0)) accumulated preferentially in phosphatidylinositol, and (wild-type)-like fatty acid composition in phosphatidylethanolamine was restored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号