首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background

Invasive species are recognized as a primary driver of native species endangerment and their removal is often a key component of a conservation strategy. Removing invasive species is not always a straightforward task, however, especially when they interact with other species in complex ways to negatively influence native species. Because unintended consequences may arise if all invasive species cannot be removed simultaneously, the order of their removal is of paramount importance to ecological restoration. In the mid-1990s, three subspecies of the island fox Urocyon littoralis were driven to near extinction on the northern California Channel Islands owing to heightened predation by golden eagles Aquila chrysaetos. Eagles were lured to the islands by an abundant supply of feral pigs Sus scrofa and through the process of apparent competition pigs indirectly facilitated the decline in foxes. As a consequence, both pigs and eagles had to be removed to recover the critically endangered fox. Complete removal of pigs was problematic: removing pigs first could force eagles to concentrate on the remaining foxes, increasing their probability of extinction. Removing eagles first was difficult: eagles are not easily captured and lethal removal was politically distasteful.

Methodology/Principal Findings

Using prey remains collected from eagle nests both before and after the eradication of pigs, we show that one pair of eagles that eluded capture did indeed focus more on foxes. These results support the premise that if the threat of eagle predation had not been mitigated prior to pig removal, fox extinction would have been a more likely outcome.

Conclusions/Significance

If complete eradication of all interacting invasive species is not possible, the order in which they are removed requires careful consideration. If overlooked, unexpected consequences may result that could impede restoration.  相似文献   

2.
A species'' intelligence may reliably predict its invasive potential. If this is true, then we might expect invasive species to be better at learning novel tasks than non-invasive congeners. To test this hypothesis, we exposed two sympatric species of Australian scincid lizards, Lampropholis delicata (invasive) and L. guichenoti (non-invasive) to standardized maze-learning tasks. Both species rapidly decreased the time they needed to find a food reward, but latencies were always higher for L. delicata than L. guichenoti. More detailed analysis showed that neither species actually learned the position of the food reward; they were as likely to turn the wrong way at the end of the study as at the beginning. Instead, their times decreased because they spent less time immobile in later trials; and L. guichenoti arrived at the reward sooner because they exhibited “freezing” (immobility) less than L. delicata. Hence, our data confirm that the species differ in their performance in this standardized test, but neither the decreasing time to find the reward, nor the interspecific disparity in those times, are reflective of cognitive abilities. Behavioural differences may well explain why one species is invasive and one is not, but those differences do not necessarily involve cognitive ability.  相似文献   

3.
4.
Observed levels of population genetic diversity are often associated with differences in species dispersal and reproductive strategies. In symbiotic organisms, the genetic diversity level of each biont should also be highly influenced by biont transmission. In this study, we evaluated the influence of the reproductive strategies of cyanolichen species on the current levels of population genetic diversity of bionts. To eliminate any phylogenetic noise, we selected two closely related species within the genus Degelia, which only differ in their reproductive systems. We sampled all known populations of both species in central Spain and genotyped the fungal and cyanobacterial components of lichen samples using DNA sequences as molecular markers. We applied population genetics approaches to evaluate the genetic diversity and population genetic structure of the symbiotic components of both lichen species. Our results indicate that fungal and cyanobiont genetic diversity is highly influenced by the reproductive systems of lichen fungus. We detected higher bionts genetic diversity values in the sexual species Degelia plumbea. By contrast, the levels of fungal and cyanobiont genetic diversity in the asexual species Degelia atlantica were extremely low (almost clonal), and the species shows a high specificity towards its cyanobiont. Our results indicate that reproduction by vegetative propagules, in species of the genus Degelia, favors vertical transmission and clonality, which affects the species’ capacity for resources and competition, thereby limiting the species to restricted niches.  相似文献   

5.
Biological invasions cause great damage to native ecosystems, therefore, it is extremely important to take measures to contain the progress of existing invasions and prevent new ones. Here, we used the Species Distribution Models approach to compare two independent datasets for the invasive alien species the Yellow-legged hornet in the Iberian Peninsula. One dataset compiles occurrence records gathered by expert people (e.g. environmental services’ technical staff and researchers); and the other compiles occurrence records gathered by non-expert people (e.g. amateur entomologists, beekeepers). The main aim is to assess the effectiveness and reliability of the dataset managed by non-experts when comparing it to the dataset managed by experts. Our results showed a high degree of concordance and similarity between models. Thus, both datasets would have the same reliability to be used in management strategies for this species.  相似文献   

6.
Habitat disturbance, particularly of human origin, promotes the invasion of exotic plants, which in turn might foster the invasion of alien-interacting animals. Here we assess whether the invasion of exotic plants – mostly mediated by habitat disturbance – facilitates the invasion of exotic flower visitors in temperate forests of the southern Andes, Argentina. We recorded visit frequencies and the identity of visitors to the flowers of 15 native and 15 exotic plant species occurring in different highly disturbed and less disturbed habitats. We identified three alien flower visitors, the hymenopterans Apis mellifera, Bombus ruderatus, and Vespula germanica. We found significantly more visitation by exotic insects in disturbed habitats. This pattern was explained, at least in part, by the association between alien flower visitors and flowers of exotic plants, which occurred more frequently in disturbed habitats. However, this general pattern masked different responses between the two main alien flower visitors. Apis mellifera exploited almost exclusively the flowers of a subset of herbaceous exotic plants that thrive under disturbance, whereas B. ruderatus visited equally flowers of both exotic and native plants in both disturbed and undisturbed habitats. We did not find any strong evidence that flowers of exotic plants were more generalist than those of native plants, or that exotic flower visitors were more generalist than their native counterparts. Our results suggest that alien plant species could facilitate the invasion of at least some exotic flower visitors to disturbed habitats. Because flowering plants as well as flower visitors benefit from this mutualism, this association may enhance, through a positive feedback, successful establishment of both exotic partners.  相似文献   

7.
Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level.  相似文献   

8.
《PloS one》2013,8(8)
There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full » species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to be further investigated from the ecological point of view (here called « core flocks »). The approach also shows that some candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported, and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the processes leading to flock-like patterning of biodiversity.  相似文献   

9.
Elton's concept of community-level resistance to invasion has derived significant theoretical support from community assembly models in which species invade (colonize) singly at low densities. Several theoretical models have provided support to this concept and are frequently cited as providing evidence that invasion resistance occurs in nature. The underlying assumptions of these models however, are derived from island or island-like systems in which species invade infrequently at low abundances. We suggest that these island-like models cannot be generalized to systems in which species arrive in greater frequencies and densities. To investigate the effects of altering the basic assumptions of these original models, we utilized assembly algorithms similar to those used in previous studies, but allowed either two species to invade per time step or single species invasions at relatively high inoculation densities. In these models, invasion resistance only occurred when the invasion process was restricted to single species invading at low densities (as in previous models). When two species were allowed to invade per time step, invasion resistant states did not occur in any of 20 simulated communities, even after 10,000 invasion events. Relaxation of the assumption of invasion at low density also resulted in a lack of invasion resistance. These results may explain why the strict concept of complete invasion resistance appears only to operate in island and island-like systems.  相似文献   

10.
Volman V  Perc M  Bazhenov M 《PloS one》2011,6(5):e20572
Electrical synapses (gap junctions) play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic), some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation) is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.  相似文献   

11.
Carthey AJ  Banks PB 《PloS one》2012,7(2):e31804
The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become ‘native’. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.  相似文献   

12.
Huang D  Haack RA  Zhang R 《PloS one》2011,6(9):e24733

Background

The establishment rate of invasive alien insect species has been increasing worldwide during the past century. This trend has been widely attributed to increased rates of international trade and associated species introductions, but rarely linked to environmental change. To better understand and manage the bioinvasion process, it is crucial to understand the relationship between global warming and establishment rate of invasive alien species, especially for poikilothermic invaders such as insects.

Methodology/Principal Findings

We present data that demonstrate a significant positive relationship between the change in average annual surface air temperature and the establishment rate of invasive alien insects in mainland China during 1900–2005. This relationship was modeled by regression analysis, and indicated that a 1°C increase in average annual surface temperature in mainland China was associated with an increase in the establishment rate of invasive alien insects of about 0.5 species year−1. The relationship between rising surface air temperature and increasing establishment rate remained significant even after accounting for increases in international trade during the period 1950–2005. Moreover, similar relationships were detected using additional data from the United Kingdom and the contiguous United States.

Conclusions/Significance

These findings suggest that the perceived increase in establishments of invasive alien insects can be explained only in part by an increase in introduction rate or propagule pressure. Besides increasing propagule pressure, global warming is another driver that could favor worldwide bioinvasions. Our study highlights the need to consider global warming when designing strategies and policies to deal with bioinvasions.  相似文献   

13.
Although issues related to the management of invasive alien species are receiving increasing attention, little is known about which factors affect the likelihood of success of management measures. We applied two data mining techniques, classification trees and boosted trees, to identify factors that relate to the success of management campaigns aimed at eradicating invasive alien invertebrates, plants and plant pathogens. We assembled a dataset of 173 different eradication campaigns against 94 species worldwide, about a half of which (50.9%) were successful. Eradications in man-made habitats, greenhouses in particular, were more likely to succeed than those in (semi-)natural habitats. In man-made habitats the probability of success was generally high in Australasia, while in Europe and the Americas it was higher for local infestations that are easier to deal with, and for international campaigns that are likely to profit from cross-border cooperation. In (semi-) natural habitats, eradication campaigns were more likely to succeed for plants introduced as an ornamental and escaped from cultivation prior to invasion. Averaging out all other factors in boosted trees, pathogens, bacteria and viruses were most, and fungi the least likely to be eradicated; for plants and invertebrates the probability was intermediate. Our analysis indicates that initiating the campaign before the extent of infestation reaches the critical threshold, starting to eradicate within the first four years since the problem has been noticed, paying special attention to species introduced by the cultivation pathway, and applying sanitary measures can substantially increase the probability of eradication success. Our investigations also revealed that information on socioeconomic factors, which are often considered to be crucial for eradication success, is rarely available, and thus their relative importance cannot be evaluated. Future campaigns should carefully document socioeconomic factors to enable tests of their importance.  相似文献   

14.
One of the most invasive species worldwide, Solenopsis invicta Buren, has been described in China since 2003. Recent studies have suggested that China populations are the result of introductions from the USA; however, detailed molecular studies need to be performed in order to understand the expansion and potential multiple introductions from other countries into China. As there were populations of red imported fire ant, S. invicta in different areas and with different methods of introduction, mitochondrial cytochrome oxidase Ⅰ gene was used as a marker from 12 populations in four cities in Fujian Province, China, to determine the relationship of invasion among these populations. The three most common haplotypes previously describe in invasive populations of S. invicta: H5, H22 and H36, were found in Fujian. However, frequencies in each city were different. For instance, three populations from Longyan city which invaded with waste plastics, shared haplotype H5. Populations from Xiamen city and Jinjiang city which dispersed with nursery stock, sward and scrap leather, shared haplotype H22. The population from Nanyan village of Xinluo district, Longyan city, bore haplotype H36. Mitochondrial data reveals that the invasion history of S. invicta in Fujian Province is complex, including multiple invasions probably from other provinces within China. Security measures to prevent S. invicta spreading within China are as important as from overseas.  相似文献   

15.
Knapp S 《PLoS biology》2011,9(5):e1001067
Assessment of conservation status is done both for areas or habitats and for species (or taxa). IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely following methods derived from studies of vertebrates may not provide the best estimates of extinction risk for plants. Biology, geography, and history all are important factors in risk, and the study poses many questions about how we categorise and assess species for conservation priorities.  相似文献   

16.
We investigated the occutrence of mate switching in the common quail, a non-monogamous species with a temporal pair bond but without either male parental care or territoriality. The study was carried out throughout the breeding seasons of 1993–95 in Mas Esplugues (Catalonia, Spain) by monitoring 28 radio-tagged couples and 17 radio-tagged unpaired males. Agonistic interactions between males inside funnel traps containing a female were also recorded. Mate switching within the laying period occurred in 72% of the females, and new partners always had a higher body condition index than old partners. Agonistic interactions inside the funnel traps also showed that successful males had a better body condition index than losers. These results, along with the observed mate-guarding behaviour of females by their partners throughout the laying period, a highly male-biased sex ratio (five males per female), the lack of territoriality of males and the expected difficulties which unmated males experience in finding pairs, suggest that mate switching is not induced by paired males. Moreover, the constant inflow of new males observed throughout the fertile period of the female and the low costs stemming from mate change strongly support the idea that it is paired females who induce mate switching, in order to improve their fitness by mating with the best quality male available at every moment of their fertile period.  相似文献   

17.
The suitability of alternative tree species to replace species that are either threatened by pests/disease or at risk from climate change is commonly assessed by their ability to grow in a predicted future climate, their resistance to disease and their production potential. The ecological implications of a change in tree species are seldom considered. Here, we develop and test 3 methods to assess the ecological suitability of alternative trees. We use as our case study the systematic search for an alternative tree species to Fraxinus excelsior (currently declining throughout Europe due to Hymenoscyphus fraxineus). Those trees assessed as most similar to F. excelsior in selected ecosystem functions (decomposition, leaf litter and soil chemistry) (Method A) were least similar when assessed by the number of ash-associated species that also use them (Method B) and vice versa. Method C simultaneously assessed ecosystem functions and species use, allowing trade-offs between supporting ecosystem function and species use to be identified. Using Method C to develop hypothetical scenarios of different tree species mixtures showed that prioritising ecosystem function and then increasing the mixture of tree species to support the greatest number of ash-associated species possible, results in a mixture of trees more ecologically similar to F. excelsior than by simply mixing tree species together to support the greatest number of ash-associated species. We conclude that establishing alternative tree species results in changes in both ecosystem function and species supported and have developed a general method to assess suitability that simultaneously integrates both ecosystem function and the ‘number of species supported’.  相似文献   

18.
The interaction between blood-borne pathogens and fibrinolysis is one of the most important mechanisms that mediate invasion and the establishment of infectious agents in their hosts. However, overproduction of plasmin (final product of the route) has been related in other contexts to proliferation and migration of the arterial wall cells and degradation of the extracellular matrix. We have recently identified fibrinolysis-activating antigens from Dirofilaria immitis, a blood-borne parasite whose key pathological event (proliferative endarteritis) is produced by similar mechanisms to those indicated above. The objective of this work is to study how two of this antigens [actin (ACT) and fructose-bisphosphate aldolase (FBAL)] highly conserved in pathogens, activate fibrinolysis and to establish a relationship between this activation and the development of proliferative endarteritis during cardiopulmonary dirofilariasis. We demonstrate that both proteins bind plasminogen, enhance plasmin generation, stimulate the expression of the fibrinolytic activators tPA and uPA in endothelial cell cultures and are located on the surface of the worm in contact with the host’s blood. ELISA, western blot and immunofluorescence techniques were employed for this purpose. Additionally, the implication of lysine residues in this interaction was analyzed by bioinformatics. The involvement of plasmin generated by the ACT/FBAL and plasminogen binding in cell proliferation and migration, and degradation of the extracellular matrix were shown in an “in vitro” model of endothelial and smooth muscle cells in culture. The obtained results indicate that ACT and FBAL from D. immitis activate fibrinolysis, which could be used by the parasite like a survival mechanism to avoid the clot formation. However, long-term overproduction of plasmin can trigger pathological events similar to those described in the emergence of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, similar processes may occur in other blood-borne pathogens.  相似文献   

19.
There is a general consensus that today’s deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.  相似文献   

20.
The Escherichia coli envelope stress response is controlled by the alternative sigma factor, σE, and is induced when unfolded outer membrane proteins accumulate in the periplasm. The response is initiated by sequential cleavage of the membrane-spanning antisigma factor, RseA. RseB is an important negative regulator of envelope stress response that exerts its negative effects onσE activity through its binding to RseA. In this study, we analyze the interaction between RseA and RseB. We found that tight binding of RseB to RseA required intact RseB. Using programs that performed global and local sequence alignment of RseB and RseA, we found regions of high similarity and performed alanine substitution mutagenesis to test the hypothesis that these regions were functionally important. This protocol is based on the hypothesis that functionally dependent regions of two proteins co-evolve and therefore are likely to be sequentially conserved. This procedure allowed us to identify both an N-terminal and C-terminal region in RseB important for binding to RseA. We extensively analyzed the C-terminal region, which aligns with a region of RseA coincident with the major RseB binding determinant in RseA. Both allele-specific suppression analysis and cysteine-mediated disulfide bond formation indicated that this C-terminal region of similarity of RseA and RseB identifies a contact site between the two proteins. We suggest a similar protocol can be successfully applied to pairs of non-homologous but functionally linked proteins to find specific regions of the protein sequences that are important for establishing functional linkage.The Escherichia coli σE-mediated envelope stress response is the major pathway to ensure homeostasis in the envelope compartment of the cell (1-3). σE regulon members encode periplasmic chaperones and proteases, the machinery for inserting β-barrel proteins into the outer membrane and components controlling the synthesis and assembly of LPS (4-6). This pathway is highly conserved among γ-proteobacteria (6).The σE response is initiated when periplasmic protein folding and assembly is compromised (7-9). During steady state growth, σE is inhibited by its antisigma factor, RseA, a membrane-spanning protein whose cytoplasmic domain binds to σE with picomolar affinity (10-13). Accumulation of unassembled porin monomers serves as a signal to activate the DegS protease to cleave RseA in its periplasmic domain (14, 15). This initiates a proteolytic cascade in which RseP cleaves periplasmically truncated RseA near or within the cytoplasmic membrane to release the RseAcytoplasmicE complex, and cytoplasmic ATP-dependent proteases complete the degradation of RseA thereby releasing active σE (16-19).RseB, a second negative regulator of the envelope stress response (11, 20, 21), binds to the periplasmic domain of RseA with nanomolar affinity. RseB is an important regulator of the response (2, 22, 23). It prevents RseP from degrading intact RseA, thereby ensuring that proteolysis is initiated only when the DegS protease is activated by a stress signal (21). Additionally, RseB prevents activated DegS from cleaving RseA, suggesting that interaction of RseB with RseA must be altered before the signal transduction cascade is activated (23).The goal of the present studies was to explore how RseB binds to RseA. The interaction partner of RseB is the unstructured periplasmic domain of RseA (RseA-peri). Within RseA-peri, amino acids ∼169-186 constitute a major binding determinant to RseB (23, 24). This peptide alone binds RseB with 6 μm affinity, and deleting this region abrogates binding to RseB (23). Additional regions of RseA-peri also contribute to RseB binding, as intact RseA-peri binds with 20 nm affinity to RseB (23). Much less is known about the regions of RseB required for interaction with RseA. RseB is homodimeric two-domain protein, whose large N-terminal domain shares structural homology with LolA, a protein that transports lipoproteins to outer membrane (24, 25). The smaller C-terminal domain is connected to the N-terminal domain by a linker, and the two domains share a large interface, which may facilitate interdomain signaling. Glutaraldehyde cross-linking studies indicate that the C-terminal domain interacts with RseA, but the regions of interaction were not identified (25).In the present report, we study the interaction of RseB and RseA. We establish that both domains of RseB interact with RseA-peri. Using a global sequence alignment, we discovered several regions in RseA and RseB that had high sequence similarity, despite the low overall sequence similarity between these two proteins, a finding that was independently confirmed by a local sequence similarity algorithm. This suggested that these regions were functionally dependent, and we performed a set of mutagenesis experiments designed to test this idea. Our studies of the binding properties of these mutants revealed that regions in both the N terminus and C terminus of RseB modulate interaction with RseA. Moreover, genetic suppression analysis and cysteine-mediated disulfide bond formation suggest that the region of RseA/B with highest similarity (RseA residues 165-191 (major binding determinant in RseA) and RseB residues 233-258) are interacting partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号