首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background  

Gene function analysis often requires a complex and laborious sequence of laboratory and computer-based experiments. Choosing an effective experimental design generally results from hypotheses derived from prior knowledge or experimentation. Knowledge obtained from meta-analyzing compendia of expression data with annotation libraries can provide significant clues in understanding gene and network function, resulting in better hypotheses that can be tested in the laboratory.  相似文献   

4.
目的 探讨早期应用青春双歧杆菌对NOD小鼠1型糖尿病发病的影响.方法 给予NOD小鼠口服青春双歧杆菌,观察实验组和对照组(PBS)糖尿病发病率,HE染色观察胰岛炎,免疫组化检测胰岛Bcl-2和Bax的表达,RT-PCR测定TNF-α、IFN-γ和IL-10 mRNA表达.结果 实验组胰岛炎程度较对照组明显减轻(P<0.01),胰岛Bcl-2的表达高于对照组,而Bax的表达低于对照组(P<0.05);胰腺TNF-α、IFN-γ mRNA表达实验组明显低于对照组(P<0.05),而IL-10 mRNA表达差异无显著性;实验组发病率低于对照组(P<0.05).结论 青春双歧杆菌对NOD小鼠1型糖尿病有预防作用,其机制可能与调节Th1/Th2型细胞因子的免疫失衡有关.  相似文献   

5.
6.
7.
Summary The ovulation of diploid oocytes, abnormally arrested at or during the first meiotic division, is an inheritable trait (Dipl I) in mice and modulated by a maternally transmitted factor. By repeated backcrossing, mouse strains with identical nuclear encoded genes and differing only in their mitochondrial genomes can be created. NMB mice represent such a strain having acquired the nuclear genome of C57BL/6J but still possessing mitochondria and therewith mitochondrial DNA (mtDNA) of NMRI/Bom, their female progenitor. The strains NMB and C57BL/6J were used to characterize a new mitochondrial trait, namely the ability to modulate the expression of the inheritable meiosis I error Dipl I in oocytes. We show that an increased rate of ovulated diploid oocytes is associated with the mtDNA type of C57BL/6J. These results corroborate the assumption that mitochondria do play an important role in meiosis of mammalian oocytes and hence seem to be involved also in the orderly segregation of chromosomes.  相似文献   

8.
Trichlorfon (TCF) is a widely used pesticide, which according to some epidemiological and experimental data, is suspected of being aneugenic in human and mouse cells. In particular, in vitro studies in mouse oocytes showed the induction of aneuploidy and polyploidy at the first meiotic division and of severe morphological alterations of the second meiotic spindle. We have tested the hypothesis that an acute treatment of mice with TCF might similarly affect chromosome segregation in maturing oocytes. Superovulated MF-1 mice were intraperitoneally injected with 400mg/kg TCF or orally administered with 600mg/kg TCF either at the time of or 4h after human chorionic gonadotrophin (HCG) injection. Oocytes were harvested 17h after HCG and metaphase II chromosomes were cytogenetically analyzed. No significant increase of aneuploid or polyploid cells was detected at any treatment condition. A significant (p<0.001) decrease of metaphases showing premature chromatid separation or premature anaphase II in all TCF-treated groups with respect to controls suggested that TCF treatment may have delayed the first meiotic division. To evaluate possible effects of the pesticide upon the second meiotic division, a group of females orally treated with 600mg/kg TCF at resumption of meiosis was mated with untreated males and zygotes were collected for cytogenetic analysis. No evidence of aneuploidy induction was obtained, but the frequency of polyploid zygotes was increased fivefold over the control level (p<0.01). Such polyploid embryos might have arisen from fertilization of oocytes that were either meiotically delayed and still in metaphase I at fertilization or progressed through anaphase II without cytokinesis. These findings show that in vivo studies on aneuploidy induction in oocytes may yield results different from those obtained by in vitro experiments and that both kinds of data may be necessary for risk assessment of environmentally relevant exposures.  相似文献   

9.
10.
The influence of N-acetylcysteine (ACC) on the cytogenetic effects of etoposide in F1 CBA × C57BL/6 mice was studied. Etoposide introduced intraperitoneally in doses of 10, 20, 40, and 60 mg/kg has a dose-dependent clastogenic activity and has an aneugenic effect with the induction of mainly hypohaploid oocytes. ACC significantly decreases the aneugenic and clastogenic activity of etoposide (20 mg/kg) in oocytes of 6-, 9-, and 12-week-old mice during triple introduction at a dose 200 mg/kg per os. The most pronounced anticlastogenic ACC activity (an 80% decrease) was registered in 9-week-old females; a 100% decrease in aneugenesis was detected in 6-week-old female mice.  相似文献   

11.
12.
13.
Developmental effects of sublethal mitochondrial injury in mouse oocytes   总被引:1,自引:0,他引:1  
Mitochondrial dysfunction may be acquired or inherited by oocytes without detectable morphological abnormalities. This pathology may account for some examples of unexplained pregnancy loss in women following transfer of morphologically normal in vitro fertilization (IVF) embryos. The present study was intended to determine whether sublethal mitochondrial injury in mouse oocytes before IVF negatively affects pre- and postimplantation development, and to further define the latency of developmental compromise in relation to aberrant mitochondrial metabolism. Mature mouse oocytes were loaded with the mitochondrial fluorophore rhodamine-123 and photosensitized for 20 sec, a duration previously found to permit preimplantation embryo development to the blastocyst stage and so deemed "sublethal." This treatment resulted in some aberrations in cytoplasmic patterning of organelles, but did not inhibit zygote mitochondrial metabolism. Blastocyst development following IVF was not significantly inhibited following sublethal oocyte photosensitization; however, a decrease in trophectoderm cell numbers was observed relative to untreated controls. Following intrauterine transfer, blastocysts derived from sublethally photosensitized oocytes implanted but later aborted at a higher rate, formed fetuses with lower average weights, and, in rare cases, formed abnormal fetuses relative to controls. Photosensitization for more prolonged durations resulted in failed fertilization (2 min) and rapid oocyte degeneration (10 min). Therefore, photosensitization duration and the consequent degree of mitochondrial dysfunction are negatively related to the onset of developmental compromise. Acquired low-level mitochondrial injury is heritable by the resultant embryos and can cause postimplantation developmental compromise that may be relevant to some clinically observed outcomes following human assisted reproduction strategies, including reduced birth weights for gestational age. Future strategies for the detection and prevention of mitochondrial dysfunction may assist in improving outcomes for some clinically infertile women.  相似文献   

14.
Liang Y  Ning FY  Du WJ  Wang CS  Piao SH  An TZ 《Cryobiology》2012,64(2):97-102
To improve the vitrification of mouse oocytes using straws, we attempted to estimate the type and extent of injuries during vitrification with a vitrification solution EAFS10/10. Injuries in oocytes were assessed based on cellular viability, the integrity of the plasma membrane, the status of the meiotic spindle/chromosomes, and morphological appearance. For morphologically normal oocytes, the ability to be fertilized and to develop into blastocysts was examined. Morphological assessment revealed 15% of oocytes to be injured by intracellular ice formed during vitrification, and 10% by osmotic swelling during removal of the cryoprotectant. When assessed by the status of spindles/chromosomes, the most sensitive criterion, damage was found in 16% of oocytes without any treatment. This value was similar to the proportion of fresh oocytes that did not cleave after insemination (13%). On exposure to EAFS10/10, the spindles/chromosomes were affected in 33% of oocytes. The exposure reduced the rate of cleavage by 18% points and the rate of development into blastocysts by 19 points. Vitrification reduced these rates by 15% and 36% points, respectively. Although the mechanism responsible for this moderate toxic effect on developmental ability is not known, information obtained in the present study will be useful to develop a practical method for the vitrification of mouse oocytes using straws.  相似文献   

15.
Hyper-gravity effects on the Arabidopsis transcriptome   总被引:1,自引:0,他引:1  
  相似文献   

16.
BACKGROUND Type 1 diabetes(T1D),a chronic metabolic and autoimmune disease,seriously endangers human health.In recent years,mesenchymal stem cell(MSC)transplantation has become an effective treatment for diabetes.Menstrual bloodderived endometrial stem cells(MenSC),a novel MSC type derived from the decidual endometrium during menstruation,are expected to become promising seeding cells for diabetes treatment because of their noninvasive collection procedure,high proliferation rate and high immunomodulation capacity.AIM To comprehensively compare the effects of MenSC and umbilical cord-derived MSC(UcMSC)transplantation on T1D treatment,to further explore the potential mechanism of MSC-based therapies in T1D,and to provide support for the clinical application of MSC in diabetes treatment.METHODS A conventional streptozotocin-induced T1D mouse model was established,and the effects of MenSC and UcMSC transplantation on their blood glucose and serum insulin levels were detected.The morphological and functional changes in the pancreas,liver,kidney,and spleen were analyzed by routine histological and immunohistochemical examinations.Changes in the serum cytokine levels in the model mice were assessed by protein arrays.The expression of target proteins related to pancreatic regeneration and apoptosis was examined by western blot.RESULTS MenSC and UcMSC transplantation significantly improved the blood glucose and serum insulin levels in T1D model mice.Immunofluorescence analysis revealed that the numbers of insulin+and CD31+cells in the pancreas were significantly increased in MSC-treated mice compared with control mice.Subsequent western blot analysis also showed that vascular endothelial growth factor(VEGF),Bcl2,Bcl-xL and Proliferating cell nuclear antigen in pancreatic tissue was significantly upregulated in MSC-treated mice compared with control mice.Additionally,protein arrays indicated that MenSC and UcMSC transplantation significantly downregulated the serum levels of interferonγand tumor necrosis factorαand upregulated the serum levels of interleukin-6 and VEGF in the model mice.Additionally,histological and immunohistochemical analyses revealed that MSC transplantation systematically improved the morphologies and functions of the liver,kidney,and spleen in T1D model mice.CONCLUSION MenSC transplantation significantly improves the symptoms in T1D model mice and exerts protective effects on their main organs.Moreover,MSC-mediated angiogenesis,antiapoptotic effects and immunomodulation likely contribute to the above improvements.Thus,MenSC are expected to become promising seeding cells for clinical diabetes treatment due to their advantages mentioned above.  相似文献   

17.
Ko Y  Threlfall WR 《Theriogenology》1988,29(4):987-995
Cryopreservation of mammalian eggs has been successfully accomplished using 1,2-propanediol (PG). Effects of holding times of 0 and 30 min at -40 degrees C and storage times of 1 d and 1 mo at -196 degrees C were investigated in combination with various concentrations of PG (1.0, 1.5, and 2.0M) to determine the survival and fertilizability of mouse oocytes rapidly frozen and thawed in straws. A rapid one-step dilution using 0.5 M sucrose solution inside the straws was used following the thawing of oocytes. A significant effect of PG concentration was found between 1.0 M and 1.5 or 2.0 M (P<0.01), but no significance was discovered between 1.5 M and 2.0 M (P>0.05) on subsequent survival and fertilizability of frozen and thawed mouse oocytes. With 2.0 M PG, the best survival rate (58.3%) and fertilizability rate (19.0%) were obtained by holding at -40 degrees C for 30 min and by storage at -196 degrees C for 1 d. Thirty minutes of holding at -40 degrees C reduced oocyte damage during the procedure but not significantly (P>0.05). In addition, there was no significant difference in the various storage periods (P>0.05). This study demonstrated that mammalian oocytes can be cryopreserved in the presence of 1,2-propanediol by utilizing a rapid freezing and thawing procedure.  相似文献   

18.
19.
20.
Aurora kinase A (AURKA), which is a centrosome-localized serine/threonine kinase crucial for cell cycle control, is critically involved in centrosome maturation and spindle assembly in somatic cells. Active T288 phosphorylated AURKA localizes to the centrosome in the late G2 and also spreads to the minus ends of mitotic spindle microtubules. AURKA activates centrosomal CDC25B and recruits cyclin B1 to centrosomes. We report here functions for AURKA in meiotic maturation of mouse oocytes, which is a model system to study the G2 to M transition. Whereas AURKA is present throughout the entire GV-stage oocyte with a clear accumulation on microtubule organizing centers (MTOC), active AURKA becomes entirely localized to MTOCs shortly before germinal vesicle breakdown. In contrast to somatic cells in which active AURKA is present at the centrosomes and minus ends of microtubules, active AURKA is mainly located on MTOCs at metaphase I (MI) in oocytes. Inhibitor studies using Roscovitine (CDK1 inhibitor), LY-294002 (PI3K inhibitor) and SH-6 (PKB inhibitor) reveal that activation of AURKA localized on MTOCs is independent on PI3K-PKB and CDK1 signaling pathways and MOTC amplification is observed in roscovitine- and SH-6- treated oocytes that fail to undergo nuclear envelope breakdown. Moreover, microinjection of Aurka mRNA into GV-stage oocytes cultured in 3-isobutyl-1-methyl xanthine (IBMX)-containing medium to prevent maturation also results in MOTC amplification in the absence of CDK1 activation. Over-expression of AURKA also leads to formation of an abnormal MI spindle, whereas RNAi-mediated reduction of AURKA interferes with resumption of meiosis and spindle assembly. Results of these experiments indicate that AURKA is a critical MTOC-associated component involved in resumption of meiosis, MTOC multiplication, proper spindle formation and the metaphase I-metaphase II transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号