首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haplogroup E1b1, defined by the marker P2, is the most represented human Y chromosome haplogroup in Africa. A phylogenetic tree showing the internal structure of this haplogroup was published in 2008. A high degree of internal diversity characterizes this haplogroup, as well as the presence of a set of chromosomes undefined on the basis of a derived character. Here we make an effort to update the phylogeny of this highly diverse haplogroup by including seven mutations which have been newly discovered by direct resequencing. We also try to incorporate five previously-described markers which were not, however, reported in the 2008 tree. Additionally, during the process of mapping, we found that two previously reported SNPs required a new position on the tree. There are three key changes compared to the 2008 phylogeny. Firstly, haplogroup E-M2 (former E1b1a) and haplogroup E-M329 (former E1b1c) are now united by the mutations V38 and V100, reducing the number of E1b1 basal branches to two. The new topology of the tree has important implications concerning the origin of haplogroup E1b1. Secondly, within E1b1b1 (E-M35), two haplogroups (E-V68 and E-V257) show similar phylogenetic and geographic structure, pointing to a genetic bridge between southern European and northern African Y chromosomes. Thirdly, most of the E1b1b1* (E-M35*) paragroup chromosomes are now marked by defining mutations, thus increasing the discriminative power of the haplogroup for use in human evolution and forensics.  相似文献   

2.
Increasing phylogenetic resolution of the Y chromosome haplogroup tree has led to finer temporal and spatial resolution for studies of human migration. Haplogroup T, initially known as K2 and defined by mutation M70, is found at variable frequencies across West Asia, Africa, and Europe. While several SNPs were recently discovered that extended the length of the branch leading to haplogroup T, only two SNPs are known to mark internal branches of haplogroup T. This low level of phylogenetic resolution has hindered studies of the origin and dispersal of this interesting haplogroup, which is found in Near Eastern non-Jewish populations, Jewish populations from several communities, and in the patrilineage of President Thomas Jefferson. Here we map 10 new SNPs that, together with the previously known SNPs, mark 11 lineages and two large subclades (T1a and T1b) of haplogroup T. We also report a new SNP that links haplogroups T and L within the major framework of Y chromosome evolution. Estimates of the timing of the branching events within haplogroup T, along with a comprehensive geographic survey of the major T subclades, suggest that this haplogroup began to diversify in the Near East -25 kya. Our survey also points to a complex history of dispersal of this rare and informative haplogroup within the Near East and from the Near East to Europe and sub-Saharan Africa. The presence of T1a2 chromosomes in Near Eastern Jewish and non-Jewish populations may reflect early exiles between the ancient lands of Israel and Babylon. The presence of different subclades of T chromosomes in Europe may be explained by both the spread of Neolithic farmers and the later dispersal of Jews from the Near East. Finally, the moderately high frequency (-18%) of T1b* chromosomes in the Lemba of southern Africa supports the hypothesis of a Near Eastern, but not necessarily a Jewish, origin for their paternal line.  相似文献   

3.
We report the clinical and genetic characterization of two Chinese LHON families who do not carry the primary LHON-mutations. Mitochondrial genome sequence analysis revealed the presence of a homoplasmic ND1 G3635A mutation in both families. In Family LHON-001, 31 other variants belonging to the East Asian haplogroup R11a were identified and in Family LHON-019, 37 other variants belonging to the East Asian haplogroup D4g were determined. The ND1 G3635A mutation changes the conversed serine110 residue to asparagine. This mutation has been previously described in a single Russian LHON family and has been suggested to contribute to increased LHON expressivity. In addition, a mutation in cytochrome c oxidase subunit II at C7868T (COII/L95F) may act in synergy with G3635A, increasing LHON expressivity in Family LHON-001, which had a higher level of LHON penetrance than Family LHON-019. In summary, the G3635A mutation is confirmed as a rare primary pathogenic mutation for LHON.  相似文献   

4.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

5.
Mitochondrial DNA polymorphisms were analyzed in of 1,610 randomly chosen adult men from 11 different regions from southeastern Europe (Croatians, Bosnians and Herzegovinians, Serbians, Macedonians and Macedonian Romani). MtDNA HVS-I region together with RFLP sites diagnostic for main Euroasian and African mtDNA haplogroups were typed to determine haplogroup frequency distribution. The most frequent haplogroup in studied populations was H with the exception of Macedonian Romani among whom the most frequent were South Asian (Indian) specific variants of haplogroup M. The multidimensional scaling plot showed two clusters of populations and two outliers (Macedonian Romani and the most distant from mainland Croatian island of Korcula). The first cluster was formed by populations from three Croatian islands (Hvar, Krk and Brac) and the second cluster was formed by Macedonians, Serbians, Croatians from mainland and coast, Herzegovinians, Bosnians, Slovenians, Poles and Russians. The present analysis does not address a precise evaluation of phylogenetic relations of studied populations although some conclusions about historical migrations could be noticed. More extended conclusions will be possible after deeper phylogenetic and statistical analyses.  相似文献   

6.
Excavating Y-chromosome haplotype strata in Anatolia   总被引:1,自引:0,他引:1  
Analysis of 89 biallelic polymorphisms in 523 Turkish Y chromosomes revealed 52 distinct haplotypes with considerable haplogroup substructure, as exemplified by their respective levels of accumulated diversity at ten short tandem repeat (STR) loci. The major components (haplogroups E3b, G, J, I, L, N, K2, and R1; 94.1%) are shared with European and neighboring Near Eastern populations and contrast with only a minor share of haplogroups related to Central Asian (C, Q and O; 3.4%), Indian (H, R2; 1.5%) and African (A, E3*, E3a; 1%) affinity. The expansion times for 20 haplogroup assemblages was estimated from associated STR diversity. This comprehensive characterization of Y-chromosome heritage addresses many multifaceted aspects of Anatolian prehistory, including: (1) the most frequent haplogroup, J, splits into two sub-clades, one of which (J2) shows decreasing variances with increasing latitude, compatible with a northward expansion; (2) haplogroups G1 and L show affinities with south Caucasus populations in their geographic distribution as well as STR motifs; (3) frequency of haplogroup I, which originated in Europe, declines with increasing longitude, indicating gene flow arriving from Europe; (4) conversely, haplogroup G2 radiates towards Europe; (5) haplogroup E3b3 displays a latitudinal correlation with decreasing frequency northward; (6) haplogroup R1b3 emanates from Turkey towards Southeast Europe and Caucasia and; (7) high resolution SNP analysis provides evidence of a detectable yet weak signal (<9%) of recent paternal gene flow from Central Asia. The variety of Turkish haplotypes is witness to Turkey being both an important source and recipient of gene flow.  相似文献   

7.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structuring nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno-Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and O3 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

8.
Yao YG  Salas A  Bravi CM  Bandelt HJ 《Human genetics》2006,119(5):505-515
In a number of recent studies, we summarized the obvious errors and shortcomings that can be spotted in many (if not most) mitochondrial DNA (mtDNA) data sets published in medical genetics. We have reanalyzed here the complete mtDNA genome data published in various recent reports of East Asian families with hearing impairment, using a phylogenetic approach, in order to demonstrate the persistence of lab-specific mistakes in mtDNA genome sequencing in cases where those caveats were (deliberately) neglected. A phylogenetic reappraisal of complete mtDNAs with mutation A1555G (or G11778A) indeed supports the suggested lack of association between haplogroup background and phenotypic presentation of these mutations in East Asians. In contrast, the claimed pathogenicity of mutation T1095C in Chinese families with hearing impairment seems unsupported, basically because this mutation is rather basal in the mtDNA phylogeny, being specific to haplogroup M11 in East Asia. The roles of other haplogroup specific or associated variants, such as A827G, T961C, T1005C, in East Asian subjects with aminoglycoside-induced and non-syndromic hearing loss are also unclear in view of the known mtDNA phylogeny.  相似文献   

9.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNA(Lys) region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.  相似文献   

10.
The collection of DNA from 239 Moscow residents and 62 St. Petersburg residents has been investigated by means of a biochip for genotyping haplogroup markers of the Y chromosome, including M130 (C), M145 (DE), P257 (G), M69 (II), U179 (I), M304 (J), M185 (L), M231 (N), M175 (O), P224 (R), L146 (R1a), and M343 (R1b). The distribution of haplogroup frequency in populations native to Moscow and St. Petersburg has been obtained. Three subsamples that vary in the duration of residence (one, two, or three generations) were compared. The increase in J, G, and R1b frequencies may be related to immigration from the Caucasus and other regions.  相似文献   

11.
《Genomics》2021,113(4):2158-2170
Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and Brazil have received much attention for their increased infectivity, potentially high virulence, and possible threats to existing vaccines and antibody therapies. The question remains if there are other more infectious variants transmitted around the world. We carry out a large-scale study of 506,768 SARS-CoV-2 genome isolates from patients to identify many other rapidly growing mutations on the spike (S) protein receptor-binding domain (RBD). We reveal that essentially all 100 most observed mutations strengthen the binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indicating the virus evolves toward more infectious variants. In particular, we discover new fast-growing RBD mutations N439K, S477N, S477R, and N501T that also enhance the RBD and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom (UK), South Africa, and Brazil variants may moderately weaken the binding between the RBD and many known antibodies, while mutations E484K and K417N found in South Africa and Brazilian variants, L452R and E484Q found in India variants, can potentially disrupt the binding between the RBD and many known antibodies. Among these RBD mutations, L452R is also now known as part of the California variant B.1.427. Finally, we hypothesize that RBD mutations that can simultaneously make SARS-CoV-2 more infectious and disrupt the existing antibodies, called vaccine escape mutations, will pose an imminent threat to the current crop of vaccines. A list of most likely vaccine escape mutations is given, including S494P, Q493L, K417N, F490S, F486L, R403K, E484K, L452R, K417T, F490L, E484Q, and A475S. Mutation T478K appears to make the Mexico variant B.1.1.222 the most infectious one. Our comprehensive genetic analysis and protein-protein binding study show that the genetic evolution of SARS-CoV-2 on the RBD, which may be regulated by host gene editing, viral proofreading, random genetic drift, and natural selection, gives rise to more infectious variants that will potentially compromise existing vaccines and antibody therapies.  相似文献   

12.
The Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA (mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples. It was shown that the “Saami motif” variant of mtDNA haplogroup U5b is present in a large area outside Scandinavia. A detailed phylogeographic analysis of one of the predominant Saami mtDNA haplogroups, U5b1b, which also includes the lineages of the “Saami motif,” was undertaken in 31 populations. The results indicate that the origin of U5b1b, as for the other predominant Saami haplogroup, V, is most likely in western, rather than eastern, Europe. Furthermore, an additional haplogroup (H1) spread among the Saami was virtually absent in 781 Samoyed and Ob-Ugric Siberians but was present in western and central European populations. The Y-chromosomal variety in the Saami is also consistent with their European ancestry. It suggests that the large genetic separation of the Saami from other Europeans is best explained by assuming that the Saami are descendants of a narrow, distinctive subset of Europeans. In particular, no evidence of a significant directional gene flow from extant aboriginal Siberian populations into the haploid gene pools of the Saami was found.  相似文献   

13.
Recently, the debate on the origins of the major European Y chromosome haplogroup R1b1b2-M269 has reignited, and opinion has moved away from Palaeolithic origins to the notion of a younger Neolithic spread of these chromosomes from the Near East. Here, we address this debate by investigating frequency patterns and diversity in the largest collection of R1b1b2-M269 chromosomes yet assembled. Our analysis reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described. We further investigate the young, STR-based time to the most recent common ancestor estimates proposed so far for R-M269-related lineages and find evidence for an appreciable effect of microsatellite choice on age estimates. As a consequence, the existing data and tools are insufficient to make credible estimates for the age of this haplogroup, and conclusions about the timing of its origin and dispersal should be viewed with a large degree of caution.  相似文献   

14.
Niemann-Pick C1-like 1 (NPC1L1) is an essential protein for dietary cholesterol absorption. Nonsynonymous (NS) variants of NPC1L1 in humans have been suggested to associate with cholesterol absorption variations. However, information concerning the characteristics and mechanism of these variants in cholesterol uptake is limited. In this study, we analyzed the cholesterol uptake ability of the 19 reported NS variants of NPC1L1 identified from cholesterol low absorbers. Among these variants, L110F, R306C, A395V, G402S, T413M, R693C, R1214H, and R1268H could partially mediate cellular cholesterol uptake and were categorized as partially dysfunctional variants. The other 11 variants including T61M, N132S, D398G, R417W, G434R, T499M, S620C, I647N, G672R, S881L, and R1108W could barely facilitate cholesterol uptake, and were classified into the severely dysfunctional group. The partially dysfunctional variants showed mild defects in one or multiple aspects of cholesterol-regulated recycling, subcellular localization, glycosylation, and protein stability. The severely dysfunctional ones displayed remarkable defects in all these aspects and were rapidly degraded through the ER-associated degradation (ERAD) pathway. In vivo analyses using adenovirus-mediated expression in mouse liver confirmed that the S881L variant failed to localize to liver canalicular membrane, and the mice showed defects in biliary cholesterol re-absorption, while the G402S variant appeared to be similar to wild-type NPC1L1 in mouse liver. This study suggests that the dysfunction of the 19 variants on cholesterol absorption is due to the impairment of recycling, subcellular localization, glycosylation, or stability of NPC1L1.  相似文献   

15.
It has been often stated that the overall pattern of human maternal lineages in Europe is largely uniform. Yet this uniformity may also result from an insufficient depth and width of the phylogenetic analysis, in particular of the predominant western Eurasian haplogroup (Hg) H that comprises nearly a half of the European mitochondrial DNA (mtDNA) pool. Making use of the coding sequence information from 267 mtDNA Hg H sequences, we have analyzed 830 mtDNA genomes, from 11 European, Near and Middle Eastern, Central Asian, and Altaian populations. In addition to the seven previously specified subhaplogroups, we define fifteen novel subclades of Hg H present in the extant human populations of western Eurasia. The refinement of the phylogenetic resolution has allowed us to resolve a large number of homoplasies in phylogenetic trees of Hg H based on the first hypervariable segment (HVS-I) of mtDNA. As many as 50 out of 125 polymorphic positions in HVS-I were found to be mutated in more than one subcluster of Hg H. The phylogeographic analysis revealed that sub-Hgs H1*, H1b, H1f, H2a, H3, H6a, H6b, and H8 demonstrate distinct phylogeographic patterns. The monophyletic subhaplogroups of Hg H provide means for further progress in the understanding of the (pre)historic movements of women in Eurasia and for the understanding of the present-day genetic diversity of western Eurasians in general.  相似文献   

16.
The structure of Khakass gene pool has been investigated: Y-chromosome haplogroup compositions and frequencies were described in seven population samples of two basic subethnic groups, Sagai and Kachins, from three geographically separated regions of the Khakass Republic. Eight haplogroups were detected in the Khakass gene pool: C3, E, N*, N1b, N1c, R1a1a, and R1b1b1. The haplogroup spectra and the genetic diversity by haplogroups and YSTR haplotypes differed significantly between Sagai and Kachins. Kachins had a low level of gene diversity, whereas the diversity of Sagai was similar to that of other South-Siberian ethnic groups. Sagai samples from the Askizskii district were very similar to each other, and so were two Kachin samples from the Shirinskii district, while Sagai samples from the Tashtypskii district differed considerably from each other. The contribution of intergroup differences among ethnic groups was high, indicating significant genetic differentiation among native populations in Khakassia. The Khakass gene pool was strongly differentiated both by haplogroup frequencies and by YSTR haplotypes within the N1b haplogroup. The frequencies of YSTR haplotypes within the chromosome Y haplogroups N1b, N1c, and R1a1 were determined and their molecular phylogeny was investigated. Factor and cluster analysis, as well as AMOVA, suggest that the Khakass gene pool is structured by territory and subethnic groups.  相似文献   

17.
Sjödin P  François O 《PloS one》2011,6(6):e21592
Whether or not the spread of agriculture in Europe was accompanied by movements of people is a long-standing question in archeology and anthropology, which has been frequently addressed with the help of population genetic data. Estimates on dates of expansion and geographic origins obtained from genetic data are however sensitive to the calibration of mutation rates and to the mathematical models used to perform inference. For instance, recent data on the Y chromosome haplogroup R1b1b2 (M269) have either suggested a Neolithic origin for European paternal lineages or a more ancient Paleolithic origin depending on the calibration of Y-STR mutation rates. Here we examine the date of expansion and the geographic origin of hgR1b1b2 considering two current estimates of mutation rates in a total of fourteen realistic wave-of-advance models. We report that a range expansion dating to the Paleolithic is unlikely to explain the observed geographical distribution of microsatellite diversity, and that whether the data is informative with respect to the spread of agriculture in Europe depends on the mutation rate assumption in a critical way.  相似文献   

18.
Mutations in PTPN11 gene was responsible for ~50% of the Noonan syndrome (NS), however, we did not find any mutation in PTPN11 in any of seven NS patients analysed. Whereas, the complete mtDNA sequencing revealed 146 mutations, of which five, including one heteroplasmic (A11144R; Thr  Ala) non-synonymous mutation, were novel and exclusively observed in NS patients. Interestingly all the seven probands and their maternal relatives were clustered under a major haplogroup R and its novel sub-haplogroups (R7b1b, R30a1, R30c, T2b7, U9a1) exclusive in NS, therefore we strongly suggest that these haplogroups may influence NS in South Indian populations.  相似文献   

19.
XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R mutation abolished the interaction with POLβ, but did not disrupt the interactions with PARP-1, LIG3α and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLβ interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S) and two frequent (R194W and R399Q) amino acid population variants had little or no effect on XRCC1 protein stability or the interactions with POLβ, PARP-1, LIG3α, PCNA or DNA. One common population variant (R280H) had no pronounced effect on the interactions with POLβ, PARP-1, LIG3α and PCNA, but did reduce DNA-binding ability. When expressed in HeLa cells, the XRCC1 variants—excluding E98K, which was largely nucleolar, and C389Y, which exhibited reduced expression—exhibited normal nuclear distribution. Most of the protein variants, including the V86R POLβ-interaction mutant, displayed normal relocalization kinetics to/from sites of laser-induced DNA damage: except for E98K and C389Y, and the polymorphic variant R280H, which exhibited a slightly shorter retention time at DNA breaks.  相似文献   

20.
The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3×M77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号