首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process by which bacteria regulate flagellar expression is known as phase variation and in Salmonella enterica this process permits the expression of one of two flagellin genes, fliC or fljB, at any one time. Salmonella Typhi (S. Typhi) is normally not capable of phase variation of flagellar antigen expression as isolates only harbour the fliC gene (H:d) and lacks an equivalent fljB locus. However, some S. Typhi isolates, exclusively from Indonesia, harbour an fljB equivalent encoded on linear plasmid, pBSSB1 that drives the expression of a novel flagellin named H:z66. H:z66+S. Typhi isolates were stimulated to change flagellar phase and genetically analysed for the mechanism of variation. The phase change was demonstrated to be unidirectional, reverting to expression from the resident chromosomal fliC gene. DNA sequencing demonstrated that pBSSB1 linear DNA was still detectable but that these derivatives had undergone deletion and were lacking fljA(z66) (encoding a flagellar repressor) and fljB(z66). The deletion end-point was found to involve one of the plasmid termini and a palindromic repeat sequence within fljB(z66), distinct to that found at the terminus of pBSSB1. These data demonstrate that, like some Streptomyces linear elements, at least one of the terminal inverted repeats of pBSSB1 is non-essential, but that a palindromic repeat sequence may be necessary for replication.  相似文献   

2.
Unlike the majority of Salmonella enterica serovars, Salmonella Typhi (S. Typhi), the etiological agent of human typhoid, is monophasic. S. Typhi normally harbours only the phase 1 flagellin gene (fliC), which encodes the H:d antigen. However, some S. Typhi strains found in Indonesia express an additional flagellin antigen termed H:z66. Molecular analysis of H:z66+ S. Typhi revealed that the H:z66 flagellin structural gene (fljB(z66)) is encoded on a linear plasmid that we have named pBSSB1. The DNA sequence of pBSSB1 was determined to be just over 27 kbp, and was predicted to encode 33 coding sequences. To our knowledge, pBSSB1 is the first non-bacteriophage-related linear plasmid to be described in the Enterobacteriaceae.  相似文献   

3.
4.
5.
The Escherichia coli protein Fis has been shown to bind a single site in the recombination region of phage lambda and to stimulate excisive recombination in vitro (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). We demonstrate that mutant strains deficient in fis expression show dramatically reduced rates of lambda excision in vivo. Phage yields after induction of a stable lysogen are reduced more than 200-fold in fis cells. The defect observed in phage yield is not due to inefficient phage replication or lytic growth. Direct examination of excisive recombination products reveals a severe defect in the rate of recombination in the absence of Fis. The excision defect observed in fis cells can be fully reproduced in fis+ cells by using phages that lack the Fis binding site on attR, indicating that the entire stimulatory effect of Fis on excisive recombination is due to binding at that site.  相似文献   

6.
7.
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located.  相似文献   

8.
The localization of replication origins on ARS plasmids in S. cerevisiae   总被引:157,自引:0,他引:157  
B J Brewer  W L Fangman 《Cell》1987,51(3):463-471
Replication intermediates from the yeast 2 microns plasmid and a recombinant plasmid containing the yeast autonomous replication sequence ARS1 have been analyzed by two-dimensional agarose gel electrophoresis. Plasmid replication proceeds through theta-shaped (Cairns) intermediates, terminating in multiply interlocked catenanes that are resolved during S phase to monomer plasmids. Restriction fragments derived from the Cairns forms contain replication forks and bubbles that behave differently from one another when subjected to high voltage and agarose concentrations. The two-dimensional gel patterns observed for different restriction fragments from these two plasmids indicate that in each plasmid there is a single, specific origin of replication that maps, within the limits of our resolution, to the ARS element. Our results strongly support the long-standing assumption that in Saccharomyces cerevisiae an ARS is an origin of replication.  相似文献   

9.
We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo.  相似文献   

10.
11.
12.
13.
14.
15.
Fis binding in the dnaA operon promoter region.   总被引:2,自引:0,他引:2       下载免费PDF全文
The region between the rpmH and dnaA genes contains five promoters that divergently express the ribosomal protein L34 and the proteins of the dnaA operon, including DnaA, the beta clamp of DNA polymerase III holoenzyme, and RecF. The DNA-binding protein Fis was shown by the band shift assay to bind near the rpmHp2 and dnaAp2 promoters and by DNase I footprinting to bind to a single site in the dnaAp2 promoter overlapping the -35 and spacer sequences. There were no observable differences in Fis affinity or the angle of bending induced by Fis between methylated and unmethylated DNA fragments containing the Fis binding site in the dnaAp2 promoter. Fis directly or indirectly represses the expression of DnaA protein and the beta clamp of DNA polymerase III. A fis null mutant containing a dnaA-lacZ in-frame fusion had twofold greater beta-galactosidase activity than a fis wild-type strain, and induced expression of Fis eliminated the increase in activity of the fusion protein. A two- to threefold increase in the levels of DnaA and beta clamp proteins was found in a fis null mutant by immunoblot gel analysis.  相似文献   

16.
Procedures for effective cellular lysis and plasmid deoxyribonucleic acid (DNA) isolation from group N streptococci were developed. Cells were grown at 32 degrees C for 4 h in a modified Elliker broth containing 20 mM DL-threonine. After cellular digestion with 2 mg of lysozyme per ml for 7 min at 37 degrees C, 1% sodium dodecyl sulfate exposure resulted in complete and immediate lysis. Lactose (Lac) plasmid species in Streptococcus lactis C2 and S. cremoris B1 (30 and 37 megadaltons, respectively) were demonstrated upon examination of DNA from the cleared lysates by agarose gel electrophoresis. Increasing the lysozyme treatment to 20 min or more resulted in loss of the Lac plasmid, whereas other resident plasmids were unaffected and demonstrable in agarose gels. Diethylpyrocarbonate added before lysis prevented Lac plasmid loss in 20-min lysozyme-treated cells, but was not effective after 40 min of lysozyme treatment. The results suggested that endogenous nuclease activity during the lysozyme treatment period initiated Lac plasmid DNA loss. The development of an efficient lysis procedure for the group N streptococci allowed rapid identification and characterization of plasmid DNA by agarose gel electrophoresis. The plasmid composition of S. lactis C2 and S. cremoris B1, as determined by agarose gel electrophoresis, compared favorably to previous electron microscopic observations.  相似文献   

17.
Procedures for effective cellular lysis and plasmid deoxyribonucleic acid (DNA) isolation from group N streptococci were developed. Cells were grown at 32 degrees C for 4 h in a modified Elliker broth containing 20 mM DL-threonine. After cellular digestion with 2 mg of lysozyme per ml for 7 min at 37 degrees C, 1% sodium dodecyl sulfate exposure resulted in complete and immediate lysis. Lactose (Lac) plasmid species in Streptococcus lactis C2 and S. cremoris B1 (30 and 37 megadaltons, respectively) were demonstrated upon examination of DNA from the cleared lysates by agarose gel electrophoresis. Increasing the lysozyme treatment to 20 min or more resulted in loss of the Lac plasmid, whereas other resident plasmids were unaffected and demonstrable in agarose gels. Diethylpyrocarbonate added before lysis prevented Lac plasmid loss in 20-min lysozyme-treated cells, but was not effective after 40 min of lysozyme treatment. The results suggested that endogenous nuclease activity during the lysozyme treatment period initiated Lac plasmid DNA loss. The development of an efficient lysis procedure for the group N streptococci allowed rapid identification and characterization of plasmid DNA by agarose gel electrophoresis. The plasmid composition of S. lactis C2 and S. cremoris B1, as determined by agarose gel electrophoresis, compared favorably to previous electron microscopic observations.  相似文献   

18.
The ability of Salmonella enterica serovar Typhimurium to cause disease depends upon the co-ordinated expression of many genes located around the Salmonella chromosome. Specific pathogenicity loci, termed Salmonella pathogenicity islands, have been shown to be crucial for the invasion and survival of Salmonella within host cells. Salmonella pathogenicity island 1 (SPI-1) harbours the genes required for the stimulation of Salmonella uptake across the intestinal epithelia of the infected host. Regulation of SPI-1 genes is complex, as invasion gene expression responds to a number of different signals, presumably signals similar to those found within the environment of the intestinal tract. As a result of our continued studies of SPI-1 gene regulation, we have discovered that the nucleoid-binding protein Fis plays a pivotal role in the expression of HilA and InvF, two activators of SPI-1 genes. A S. typhimurium fis mutant demonstrates a two- to threefold reduction in hilA:Tn5lacZY and a 10-fold reduction in invF:Tn5lacZY expression, as well as a 50-fold decreased ability to invade HEp-2 tissue culture cells. This decreased expression of hilA and invF resulted in an altered secreted invasion protein profile in the fis mutant. Furthermore, the virulence of a S. typhimurium fis mutant is attenuated 100-fold when administered orally, but has wild-type virulence when administered intraperitoneally. Expression of hilA:Tn5lacZY and invF:Tn5lacZY in the fis mutant could be restored by introducing a plasmid containing the S. typhimurium fis gene or a plasmid containing hilD, a gene encoding an AraC-like regulator of Salmonella invasion genes.  相似文献   

19.
20.
In order to understand the mechanisms leading to the complete duplication of linear eukaryotic chromosomes, the temporal order of the events involved in replication of a 7.5-kb Saccharomyces cerevisiae linear plasmid called YLpFAT10 was determined. Two-dimensional agarose gel electrophoresis was used to map the position of the replication origin and the direction of replication fork movement through the plasmid. Replication began near the center of YLpFAT10 at the site in the 2 microns sequences that corresponds to the 2 microns origin of DNA replication. Replication forks proceeded bidirectionally from the origin to the ends of YLpFAT10. Thus, yeast telomeres do not themselves act as origins of DNA replication. The time of origin utilization on YLpFAT10 and on circular 2 microns DNA in the same cells was determined both by two-dimensional gel electrophoresis and by density transfer experiments. As expected, 2 microns DNA replicated in early S phase. However, replication of YLpFAT10 occurred in late S phase. Thus, the time of activation of the 2 microns origin depended upon its physical context. Density transfer experiments established that the acquisition of telomeric TG1-3 single-strand tails, a predicted intermediate in telomere replication, occurred immediately after the replication forks approached the ends of YLpFAT10. Thus, telomere replication may be the very last step in S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号