首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tau is a neuronal microtubule-associated protein that plays a central role in many cellular processes, both physiological and pathological, such as axons stabilization and Alzheimer's disease. Despite extensive studies, very little is known about the detailed molecular basis of tau binding to microtubules. We used the four-repeat recombinant htau40 and tubulin dimers to show for the first time that tau is able to induce both microtubule and ring formation from 6S alphabeta tubulin in phosphate buffer without added magnesium (nonassembly conditions). The amount of microtubules or rings formed was protein concentration-, temperature-, and nucleotide-dependent. By means of biophysical approaches, we showed that tau binds to tubulin without global-folding change, detectable by circular dichroism. We also demonstrated that the tau-tubulin interaction follows a ligand-mediated elongation process, with two tau-binding site per tubulin dimer. Moreover, using a tubulin recombinant alpha-tubulin C-terminal fragment (404-451) and a beta-tubulin C-terminal fragment (394-445), we demonstrated the involvement of both of these tubulin regions in tau binding. From this model system, we gain new insight into the mechanisms by which tau binds to tubulin and induces microtubule formation.  相似文献   

2.
The effects of cyclic AMP-dependent protein kinase (cAMP-PK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation on the binding of bovine tau to tubulin and calpain-mediated degradation of tau were studied. Both cAMP-PK and CaMKII readily phosphorylated tau and slowed the migration of tau on sodium dodecyl sulfate-containing polyacrylamide gels. However, cAMP-PK phosphorylated tau to a significantly greater extent than CaMKII (1.5 and 0.9 mol of 32P/mol of tau, respectively), and phosphorylation of tau by cAMP-PK resulted in a greater shift to a more acidic, less heterogeneous pattern on two-dimensional nonequilibrium pH gradient gels compared with CaMKII phosphorylation. Two-dimensional phosphopeptide maps indicate that cAMP-PK phosphorylates a site or sites on tau that are phosphorylated by CaMKII, as well as a unique site or sites that are not phosphorylated by CaMKII. Phosphorylation of tau by cAMP-PK significantly decreased tubulin binding and, as previously reported, also inhibited the calpain-induced degradation of tau. CaMKII phosphorylation of tau did not alter either of these parameters. These results suggest that the phosphorylation of site(s) on the tau molecule uniquely accessible to cAMP-PK contributed to the decreased tau-tubulin binding and increased resistance to calpain hydrolysis.  相似文献   

3.
Previous studies have demonstrated that the microtubule - associated proteins MAP-2 and tau interact selectively with common binding domains on tubulin defined by the low-homology segments a (430–441) and (422–434). It has been also indicated that the synthetic peptide VRSKIGSTENLKHQPGGG corresponding to the first tau repetitive sequence represents a tubulin binding domain on tau. The present studies show that the calcium-binding protein calmodulin interacts with a tubulin binding site on tau defined by the second repetitive sequence VTSKCGSLGNIHHKPGGG. It was shown that both tubulin and calmodulin bind to tau peptide-Sepharose affinity column. Binding of calmodulin occurs in the presence of 1 mM Ca 2+ and it can be eluted from the column with 4 mM EGTA. These findings provide new insights into the regulation of microtubule assembly, since Ca 2+/calmodulin inhibition of tubulin polymerization into microtubules could be mediated by the direct binding of calmodulin to tau, thus preventing the interaction of this latter protein with tubulin.  相似文献   

4.
The protein domain responsible for the interaction of tau with tubulin has been identified. Biophysical studies indicated that the synthetic peptide Val187-Gly204 (VRSKIG-STENLKHQPGGG) from the repetitive sequence on tau binds to two sites on the tubulin heterodimer and to one site on each of the microtubule-associated protein-interacting C-terminal tubulin peptides alpha(430-441) and beta(422-434). The binding data showed a relatively stronger interaction of Val187-Gly204 with beta(422-434) as compared to that with alpha(430-441). The interaction of this tau peptide with either alpha or beta tubulin peptides appears to be associated with conformational changes in both the tau and the tubulin peptides. The beta tubulin peptide also appears to induce a structural change of tau fragment Val218-Gly235. Interestingly, tau peptides Val187-Gly204 and Val218-Gly235 induced tubulin self-assembly in a cold-reversible fashion, and incorporated into the assembled polymers. The specificity of the interaction of the tau peptide was supported by the competition of tau protein for the interaction with the tubulin polymer. In addition, the tau peptide appears to contain the principal antigenic determinant(s) recognized by anti-idiotypic antibodies that react with the tubulin binding domains on microtubule-associated proteins. The present findings together with the demonstration of the presence of multiple sites for the binding of the alpha(430-441) and beta(422-434) tubulin fragments to tau, and the existence of repetitive sequences on tau, strongly support the hypothesis that the region of tau defined by the repetitive sequences is involved in its interaction with tubulin.  相似文献   

5.
The respective contributions of electrostatic interaction and specific sequence recognition in the binding of microtubule-associated proteins (MAPs) to microtubules have been studied, using as models yeast valyl- and lysyl-tRNA synthetases (VRS, KRS) that carry an exposed basic N-terminal domain, and a synthetic peptide reproducing the sequence 218-235 on tau protein, known to be part of the microtubule-binding site of MAPs. VRS and KRS bind to microtubules with a KD in the 10(-6) M range, and tau 218-235 binds with a KD in the 10(-4) M range. Binding of KRS and tau 218-235 is accompanied by stabilization and bundling of microtubules, without the intervention of an extraneous bundling protein. tau 218-235 binds to microtubules with a stoichiometry of 2 mol/mol of assembled tubulin dimer in agreement with the proposed binding sequences alpha[430-441] and beta[422-434]. Binding stoichiometries of 2/alpha beta S tubulin and 1/alpha S beta S tubulin were observed following partial or complete removal of the tubulin C-terminal regions by subtilisin, which localizes the site of subtilisin cleavage upstream residue alpha-441 and downstream residue beta-434. Quantitative measurements show that binding of MAPs, KRS, VRS, and tau 218-235 is weakened but not abolished following subtilisin digestion of the C-terminus of tubulin, indicating that the binding site of MAPs is not restricted to the extreme C-terminus of tubulin.  相似文献   

6.
The structural-functional aspects of the tubulin binding domain on the microtubule-associated protein MAP-2, and its relationship with the tubulin binding domain on tau, were studied using anti-idiotypic antibodies that react specifically with the epitope(s) on MAPs involved in their interaction with tubulin in addition to other tau and MAP-2 specific antibodies. Previous studies showed that MAP-2 and tau share common binding sites on tubulin defined by the peptide sequences alpha (430-441) and beta (422-434) of tubulin subunits. Furthermore, binding experiments revealed the existence of multiple sites for the interaction of the alpha- and beta-tubulin peptides with MAP-2 and tau. Most recent studies showed that the synthetic tau peptide Val187-Gly204 (VRSKIGSTENLKHQPGGG) from the repetitive sequence on tau defines a tubulin binding site on tau. Our present immunological studies using anti-idiotypic antibodies which interact with the synthetic tau peptide and antibodies against the Val187-Gly204 tau peptide indicate that MAP-2 and tau share common antigenic determinants at the level of their respective tubulin binding domains. These antigenic determinants appear to be present in the 35 kDa tubulin binding fragment of MAP-2 and in 18-20 kDa chymotryptic fragments containing the tubulin binding site(s) on MAP-2. These findings, along with structural information on these proteins, provide strong evidence in favor of the hypothesis that tubulin binding domains on MAP-2 and tau share similar structural features.  相似文献   

7.
In recent decades, considerable efforts have been made to understand the mechanism of memory, cognition, and relevant neurodegenerative diseases in the human brain. Several studies have shown the importance of microtubule proteins in the memory mechanism and memory dysfunction. Microtubules possess dynamicity, which is essential for functions of neuronal networks. Microtubule-associated proteins, i.e., tau, play vital roles in microtubule stability. On the other hand, the ferromagnetic mineral magnetite (Fe3O4) has been detected in the normal human brain, and elevated levels of magnetite are also observed in the brains of Alzheimer’s disease patients. Therefore, we propose that a relationship between microtubule organization in axons and brain magnetite nanoparticles is possible. In this study we found alterations of microtubule polymerization in the presence of increasing concentrations of magnetite through transmission electron microscopy images and a turbidimetry method. Structural changes of microtubule and tau protein, as an essential microtubule-associated protein for tubulin assembly, were detected via circular dichroism spectroscopy, intrinsic fluorescence, and 8-anilino-1-naphthalenesulfonic acid fluorometry. We predicted three possible binding sites on tau protein and one possible binding site on tubulin dimer for magnetite nanoparticles. Magnetite also causes the morphology of PC12 cells to change abnormally and cell viability to decrease. Finally, we suggest that magnetite changes microtubule dynamics and polymerization through two paths: (1) changing the secondary and tertiary structure of tubulin and (2) binding to either tubulin dimer or tau protein and preventing tau–tubulin interaction.  相似文献   

8.
The tau family of microtubule-associated proteins has a microtubule-binding domain which includes three or four conserved sequence repeats. Pelleting assays show that when tubulin and tau are co- assembled into microtubules, the presence of taxol reduces the amount of tau incorporated. In the absence of taxol, strong binding sites for tau are filled by one repeat motif per tubulin dimer; additional tau molecules bind more weakly. We have labelled a repeat motif with nanogold and used three-dimensional electron cryomicroscopy to compare images of microtubules assembled with labelled or unlabelled tau. With kinesin motor domains bound to the microtubule outer surface to distinguish between alpha- and beta-tubulin, we show that the gold label lies on the inner surface close to the taxol binding site on beta-tubulin. Loops within the repeat motifs of tau have sequence similarity to an extended loop which occupies a site in alpha-tubulin equivalent to the taxol-binding pocket in beta-tubulin. We propose that loops in bound tau stabilize microtubules in a similar way to taxol, although with lower affinity so that assembly is reversible.  相似文献   

9.
A 54-amino acid peptide reproducing the first and second repeats and intervening spacer sequence of the tubulin binding motif (residues 182-235) of murine tau protein, and several congeners representing different degrees of sequence scrambling have been prepared by solid phase methods and fully characterized chemically. These double-repeat peptides have been shown to induce microtubule formation at concentrations about one order of magnitude lower than single-repeat controls, under conditions close to the critical concentration needed for tubulin self-assembly. On the other hand, partial loss of microtubule-inducing capacity was observed for peptides with primary structures increasingly disorganized with respect to the canonical peptide. These results call into question the assumption that a high degree of primary structure specificity is involved in the tau-tubulin interaction leading to in vitro microtubule formation.  相似文献   

10.
The interaction of microtubule associated proteins (MAPs) with the microtubule system has been characterized in depth in neuronal cells from various mammalian species. These proteins interact with well-defined domains within the acidic tubulin carboxyl-terminal regulatory region. However, there is little information on the mechanisms of MAPs-tubulin interactions in nonmammalian systems. Recently, a novel tau-like protein designated as DMAP-85 has been identified in Drosophila melanogaster, and the regulation of its interactions with cytoskeletal elements was analyzed throughout different developmental stages of this organism. In this report, the topographic domains involved in the binding of DMAP-85 with tubulin heterodimer were investigated. Affinity chromatography of DMAP-85 in matrixes of taxol-stabilized microtubules showed the reversible interaction of DMAP-85 with domains on the microtubular surface. Co-sedimentation studies using the subtilisin-treated tubulin (S-tubulin) indicated the lack of association of DMAP-85 to this tubulin moiety. Moreover, studies on affinity chromatography of the purified 4 kDa C-terminal tubulin peptide bound to an affinity column, confirmed that DMAP-85 interacts directly with this regulatory domain on tubulin subunits. Further studies on sequencial affinity chromatography using a calmodulin affinity column followed by the microtubule column confirmed the similarities in the interaction behavior of DMAP-85 with that of tau. DMAP-85 associated to both calmodulin and the microtubular polymer. These studies support the idea that the carboxyl-terminal region on tubulin constitutes a common binding domain for most microtubule-interacting proteins.Abbreviations MAPs microtubule-associated proteins - C-terminal carboxyl-terminal - SDS-PAGE polyacrylamide gel electrophoresis in the presence of SDS - DTT dithiotreitol - BSA bovine serum albumin  相似文献   

11.
The role of microtubules in platelet aggregation and secretion has been analyzed using platelets permeabilized with digitonin and monoclonal antibodies to alpha (DM1A) and beta (DM1B) subunits of tubulin. Permeabilized platelets were able to undergo aggregation and secretory release. However, threshold doses of agonists capable of eliciting a second wave of aggregation and the platelet release reaction were higher than in control platelets exposed to dimethyl sulfoxide, the solvent for digitonin. Both antibodies to alpha and beta tubulin caused a further increase in the threshold concentration of agonists and inhibited the secretory release of permeabilized platelets, but were ineffective using intact platelets. Neither monoclonal antibody inhibited polymerization or depolymerization of platelet tubulin in vitro. Antibodies to platelet actin and myosin also exhibited an inhibitory activity on platelet aggregation albeit less severe than that observed with the antibodies to alpha and beta tubulin. There was evidence of an interaction between DM1A and DM1B and the antibodies to actin and myosin. The interaction of platelet tubulin and myosin was investigated by two different methods. (1) Coprecipitation of the proteins at low ionic strength at which tubulin by itself did not precipitate and (2) affinity chromatography on columns of immobilized myosin. Tubulin freed of its associated proteins (MAPs) by phosphocellulose chromatography bound to myosin in a molar ratio which approached 2. Platelet actin competed with tubulin for 1 binding site on the myosin molecule. MAPs also reduced the binding stoichiometry of tubulin/myosin. Treatment of microtubule protein with p-chloromercuribenzoate or colchicine did not influence its binding to myosin. DM1A and DM1B inhibited the interaction of tubulin and myosin. This effect could also be demonstrated by reaction of electrophoretic transblots of extracted platelet tubulin with the respective proteins. We interpret these results as evidence for an interference of the two monoclonal antibodies to the tubulin subunits (DM1A and DM1B) with the translocation of microtubule protein from its submembranous site to a more central one during the activation process.  相似文献   

12.
Oryzalin, a dinitroaniline herbicide, was previously reported to bind to plant tubulin with a moderate strengthe interaction (dissociation constant [Kd] = 8.4 [mu]M) that appeared inconsistent with the nanomolar concentrations of drug that cause the loss of microtubules, inhibit mitosis, and produce herbicidal effects in plants (L.C. Morejohn, T.E. Bureau, J. Mole-Bajer, A.S. Bajer, D.E. Fosket [1987] Planta 172: 252-264). To characterize further the mechanism of action of oryzalin, both kinetic and quasi-equilibrium ligand-binding methods were used to examine the interaction of [14C]-oryzalin with tubulin from cultured cells of maize (Zea mays L. cv Black Mexican Sweet). Oryzalin binds to maize tubulin dimer via a rapid and pH-dependent interaction to form a tubulin-oryzalin complex. Both the tubulin-oryzalin binding strength and stoichiometry are underestimated substantially when measured by kinetic binding methods, because the tubulin-oryzalin complex dissociates rapidly into unliganded tubulin and free oryzalin. Also, an uncharacterized factor(s) that is co-isolated with maize tubulin was found to noncompetitively inhibit oryzalin binding to the dimer. Quasi-equilibrium binding measurements of the tubulin-oryzalin complex using purified maize dimer afforded a Kd of 95 nM (pH 6.9; 23[deg]C) and an estimated maximum molar binding stoichiometry of 0.5. No binding of oryzalin to pure bovine brain tubulin was detected by equilibrium dialysis, and oryzalin has no discernible effect on microtubules in mouse 3T3 fibroblasts, indicating an absence of the oryzalin-binding site on mammalian tubulin. Oryzalin binds to pure taxol-stabilized maize microtubules in a polymer mass- and number-dependent manner, although polymerized tubulin has a much lower oryzalin-binding capacity than unpolymerized tubulin. Much more oryzalin is incorporated into polyment during taxol-induced assembly of pure maize tubulin, and half-maximal inhibition of the rapid phase of taxol-induced polymerization of 5 [mu]M tubulin is obtained with 700 [mu]M oryzalin. The data are consistent with a molecular mechanism whereby oryzalin binds rapidly, reversibly, and with high affinity to the plant tubulin dimer to form a tubulin-oryzalin complex that, at concentrations substoichiometric to tubulin, copolymerizes with unliganded tubulin and slows further assembly. Because half-maximal inhibition of maize callus growth is produced by 37 nM oryzalin, the herbicidal effects of oryzalin appear to result from a substoichiometric poisoning of microtubules.  相似文献   

13.
Binding between the microtubule-associated tau protein and S100b protein was demonstrated by affinity chromatography and cross-linking experiments and was manifested in the effect of S100b on tau protein phosphorylation by protein kinase II. All three expressions of the binding showed that S100b discriminates among the four species of tau, revealing for the first time that the different kinds of tau may differ functionally. Noncovalent interaction between tau and S100b depended on the presence of Ca2+ or Zn2+ and resulted in total inhibition of tau phosphorylation by protein kinase II. In the absence of reducing agent, covalent binding studies between Cys84 beta in the carboxyl-terminal region of the S100b-beta subunit and tau proteins confirmed interactions between the two proteins. It is suggested that the homologous calcium-binding domain that characterizes the carboxyl terminus of S100 and the tubulin subunit may be responsible for the common interaction of both proteins with tau proteins. The physicochemical relationship between S100 subunits and p11, the subunit of a substrate for tyrosine kinase, and their similarity in interaction with protein kinase substrates are discussed.  相似文献   

14.
The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP–tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin–microtubule balance. This indicates that tau''s dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport.  相似文献   

15.
We have isolated the MAP/tau proteins from twice-cycled chick brain microtubule preparations and demonstrated that they are responsible for the nitrocellulose DNA binding activity we and others have measured. Using the isolated MAP/tau proteins we then measured the apparent affinity constant Kapp for the homologous chick DNA interaction and found evidence for two equilibrium affinity classes-a Kapp = 6 × 107 M–1, responsible for the bulk of the DNA binding activity and a small (< 10%) higher affinity Kapp = 108 – 109 M–1, likely due to sequence specific binding protein species. Using the same chick brain MAP-tau protein, a heterologous interaction with D. melanogaster DNA, was found to possess just the lower affinity class-Kapp = 2 × 107 M–1. Under stringent binding conditions we carried out equilibrium nitrocellulose filter binding experiments in a ternary reaction mixture at constant MAP/tau protein and 35S radiolabelled chick DNA concentration using increasing and excess concentrations of competitor DNAs of different sources. The order of competitor strengths found was-chick DNA > mouse DNA > D. melanogaster = E. coli. DNA. These data and specifically the homologous DNA: protein case being the strongest competitor corroborate our previous studies using total microtubule protein and provide new evidence for a conserved interaction of a small DNA sequence class with MAP/tau protein species. Moreover, these data allow us to conclude that the conserved DNA sequence: MAP/tau protein interactions do not critically depend upon any energetic feature co-involving tubulin for their properties since tubulin is absent from these preparations.  相似文献   

16.
Tau is a family of closely related proteins (55,000-62,000 mol wt) which are contained in the nerve cells and copolymerize with tubulin to induce the formation of microtubules in vitro. All information so far has indicated that tau is closely apposed to the microtubule lattice, and there was no indication of domains projecting from the microtubule polymer lattice. We have studied the molecular structure of the tau factor and its mode of binding on microtubules using the quick-freeze, deep-etch method (QF.DE) and low angle rotary shadowing technique. Phosphocellulose column-purified tubulin from porcine brain was polymerized with tau and the centrifuged pellets were processed by QF.DE. We observed periodic armlike elements (18.7 +/- 4.8 nm long) projecting from the microtubule surface. Most of the projections appeared to cross-link adjacent microtubules. We measured the longitudinal periodicity of tau projections on the microtubules and found it to match the 6-dimer pattern better than the 12-dimer pattern. The stoichiometry of tau versus tubulin in preparations of tau saturated microtubules was 1:approximately 5.0 (molar ratio). Tau molecules adsorbed on mica took on rodlike forms (56.1 +/- 14.1 nm long). Although both tau and MAP1 are contained in axons, competitive binding studies demonstrated that the binding sites of tau and MAP1A on the microtubule surfaces are most distinct, although they may partially overlap.  相似文献   

17.
We have compared the interaction of ncd (non-claret disjunctional), a kinesin related protein, with microtubules and tubulin heterodimer. Ultracentrifugation experiments revealed that the ncd motor domain, residues 335-700 (ncd335), does not induce tubulin polymerization but stabilizes pre-formed microtubules with a maximum effect at a 1:1 ncd335:tubulin ratio. Ncd335 binding to tubulin or microtubules was estimated by following the change in fluorescence polarization of an exogenous dye attached to Cys670 of ncd335. Ncd335 binding to tubulin (containing GTP or GDP-bound) is characterized by a 2:1 stoichiometry, a higher affinity and an increased sensitivity towards salt, ADP, ATP and AMPPNP, as compared with ncd335 binding to microtubules. Maximum ATPases were 0.06-0.08 sec(-1) and 1.8-2.0 sec(-1) for the ncd335-tubulin and ncd335-microtubules complexes, respectively. Only the polymerized complex is fully functional, suggesting the presence of additional contacts between adjacent protofilaments. Moreover, the data reveal that the oligomeric state of microtubules is a potent regulator for the activity of kinesin related proteins.  相似文献   

18.
Tau protein, the major constituent of paired helical filaments in Alzheimer's disease, belongs to the intrinsically disordered proteins (IDPs). IDPs are an emerging group in the protein kingdom characterized by the absence of a rigid three-dimensional structure. Disordered proteins usually acquire a "functional fold" upon binding to their interaction partner(s). This property of IDPs implies the need for innovative approaches to measure their binding affinity. We have mapped and measured the Alzheimer's-disease-associated epitope on intrinsically disordered tau protein with a novel two-step sandwich competitive enzyme-linked immunosorbent assay (ELISA). This approach allowed us to determine the binding affinity of disordered tau protein in liquid phase without any disturbance to the competitive equilibrium and without any need for covalent or noncovalent modification of tau protein. Furthermore, the global fitting method, used for the reconstruction of tau binding curves, significantly improved the assay readout. The proposed novel competitive ELISA allowed us to determine the changes in the standard Gibbs energy of binding, thus enabling measurement of tau protein conformation in the core of paired helical filaments. IDP competitive ELISA results showed, for the first time, that the tau protein C terminus of the Alzheimer's-disease-derived paired helical filaments core subunit adopts beta-turn type I' fold and is accessible from solution.  相似文献   

19.
The C-terminal region of tubulin is involved in multiple aspects of the regulation of microtubule assembly. To elucidate the molecular mechanisms of this regulation, we study here, using different approaches, the interaction of Tau, spermine, and calcium, three representative partners of the tubulin C-terminal region, with a peptide composed of the last 42 residues of α1a-tubulin. The results show that their binding involves overlapping amino acid stretches in the C-terminal tubulin region: amino acid residues 421-441 for Tau, 430-432 and 444-451 for spermine, and 421-443 for calcium. Isothermal titration calorimetry, NMR, and cosedimentation experiments show that Tau and spermine have similar micromolar binding affinities, whereas their binding stoichiometry differs (C-terminal tubulin peptide/spermine stoichiometry 1:2, and C-terminal tubulin peptide/Tau stoichiometry 8:1). Interestingly, calcium, known as a negative regulator of microtubule assembly, can compete with the binding of Tau and spermine with the C-terminal domain of tubulin and with the positive effect of these two partners on microtubule assembly in vitro. This observation opens up the possibility that calcium may participate in the regulation of microtubule assembly in vivo through direct (still unknown) or indirect mechanism (displacement of microtubule partners). The functional importance of this part of tubulin was also underlined by the observation that an α-tubulin mutant deleted from the last 23 amino acid residues does not incorporate properly into the microtubule network of HeLa cells. Together, these results provide a structural basis for a better understanding of the complex interactions and putative competition of tubulin cationic partners with the C-terminal region of tubulin.  相似文献   

20.
A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号