首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[背景]猪源肠外致病性大肠埃希氏菌(extraintestinal pathogenic Escherichia coli,ExPEc)是一种严重危害养猪业的病原菌,有关其生物膜形成能力与耐药性的研究报道很少。[目的]探讨从病猪肺脏中分离鉴定的3株ExPEc的生物膜形成能力及耐药性,为从抗生物膜形成角度防治猪肠外大肠埃希氏菌病提供参考。[方法]采用96孔板结晶紫染色法结合正交实验优化猪源ExPEc分离株的生物膜形成最佳条件与成膜能力;通过扫描电镜观察各菌株生物膜的形态结构;利用PCR方法检测其携带的生物膜形成相关基因;采用微量肉汤稀释法测定抗生素对生物膜态与浮游态下猪源ExPEc分离株的最小抑菌浓度(minimum inhibitory concentration,MIC)。[结果]3株猪源ExPEc的最佳成膜条件并不一致,但在各自最佳条件下均能形成很强的生物被膜且同时携带10个生物膜形成相关基因(pgaA,pgaB,pgaC,pgaD,luxS,fimA,hipA,iha,flhC,flhD)。扫描电镜观察显示,菌株SE-1聚集后可形成片状生物膜,菌株SE-2和SE-3聚集后可形成多...  相似文献   

2.
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.  相似文献   

3.
4.
Closely related Escherichia coli B2 strains O1:K1, O2:K1, O18:K1, and O45:K1 constitute a major subgroup causing extraintestinal infections. A DNA pathoarray analysis was used to develop a PCR specific for this subgroup that was included in the multiplex phylogenetic-grouping PCR method. Our PCR may serve to identify this virulent subgroup among different ecological niches.  相似文献   

5.
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen which can infect humans and animals and cause many diseases outside the intestine. Here, we report the first draft genome sequence of a porcine ExPEC strain, PCN033, isolated from a pig with meningitis.  相似文献   

6.

Background

Strains of extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize extraintestinal sites and cause a wide range of infections. Genomic analysis of ExPEC has mainly focused on isolates of human and avian origins, with porcine ExPEC isolates yet to be sequenced. To better understand the genomic attributes underlying the pathogenicity of porcine ExPEC, we isolated two E. coli strains PCN033 and PCN061 from pigs, assessed their in vivo virulence, and completed and compared their genomes.

Results

Animal experiments demonstrated that strain PCN033, but not PCN061, was pathogenic in a pig model. The chromosome of PCN033 was 384 kb larger than that of PCN061. Among the PCN033-specific sequences, genes encoding adhesins, unique lipopolysaccharide, unique capsular polysaccharide, iron acquisition and transport systems, and metabolism were identified. Additionally, a large plasmid PCN033p3 harboring many typical ExPEC virulence factors was identified in PCN033. Based on the genetic variation between PCN033 and PCN061, corresponding phenotypic differences in flagellum-dependent swarming motility and metabolism were verified. Furthermore, the comparative genomic analyses showed that the PCN033 genome shared many similarities with genomic sequences of human ExPEC strains. Additionally, comparison of PCN033 genome with other nine characteristic E. coli genomes revealed 425 PCN033-special coding sequences. Genes of this subset included those encoding type I restriction-modification (R-M) system, type VI secretion system (T6SS) and membrane-associated proteins.

Conclusions

The genetic and phenotypic differences between PCN033 and PCN061 could partially explain their differences in virulence, and also provide insight towards the molecular mechanisms of porcine ExPEC infections. Additionally, the similarities between the genomes of PCN033 and human ExPEC strains suggest that some connections between porcine and human ExPEC strains exist. The first completed genomic sequence for porcine ExPEC and the genomic differences identified by comparative analyses provide a baseline understanding of porcine ExPEC genetics and lay the foundation for their further study.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1890-9) contains supplementary material, which is available to authorized users.  相似文献   

7.
摘 要:[背景]近年来,我国规模猪场着重加强了对猪繁殖与呼吸综合征、猪圆环病毒病、猪瘟、猪伪狂犬病、猪链球菌病、副猪嗜血杆菌病等疫病的防控,却忽视了由肠外致病性大肠杆菌(Extraintestinal Pathogenic Escherichia coli,ExPEC)对猪群健康产生的潜在危害性,了解和掌握猪源ExPEC流行特征意义显著。[目的]探究临床分离的54株猪源ExPEC血清型、系统进化群和基因型的分布及流行特征。[方法]应用玻板凝集试验和试管凝集试验鉴定O抗原血清型,采用PCR技术检测系统进化群鉴定相关基因、28个ExPEC相关毒力基因以及多位点序列分型相关基因。[结果]受试菌中有52株确定了O抗原血清型,其中40株为O38 (74.1%),为优势血清型;8株为O127 (14.8%),O93和O11均2株(各占3.7%)。受试菌中44株为B2群(81.5%),是主要系统进化群,D群和B1群均5 株(各占 9.3%);28 个 ExPEC 相关毒力基因中ompA、ibeA、fimH、traT、focD、papA、iroN、iutA、iucD、cvaC、tsh、kpsMT Ⅱ、iss和ompT出现的频率超过50%,其中ompA和ibeA检出率分别达100%和96.3%,为高度流行的毒力基因,未检到cnf1,而bmaE、malX和iha更倾向分布于D群菌株中。受试菌共呈现31种ST型,其中ST10和ST648均5株(各占9.3%),ST410和ST101均4株(各占7.4%)。[结论]猪源ExPEC优势血清型及系统进化群在不同地区、不同时段上的流行分布均存在一定差异,呈现动态过程,O38作为优势血清型目前尚未见报道,具有高致病性的B2群和D群菌株有逐渐增多的趋势。ST型复杂多样,呈现遗传多样性,在一定程度上与人源和禽源ExPEC具有相同的遗传背景。  相似文献   

8.
Extraintestinal pathogenic Escherichia coli (ExPEC) are an important cause of urinary tract infections, neonatal meningitis and septicaemia in humans. Animals are recognized as a reservoir for human intestinal pathogenic E. coli, but whether animals are a source for human ExPEC is still a matter of debate. Pathologies caused by ExPEC are reported for many farm animals, especially for poultry, in which colibacillosis is responsible for huge losses within broiler chickens. Cases are also reported for companion animals. Commensal E. coli strains potentially carrying virulence factors involved in the development of human pathologies also colonize the intestinal tract of animals. This review focuses on the recent evidence of the zoonotic potential of ExPEC from animal origin and their potential direct or indirect transmission from animals to humans. As antimicrobials are commonly used for livestock production, infections due to antimicrobial-resistant ExPEC transferred from animals to humans could be even more difficult to treat. These findings, combined with the economic impact of ExPEC in the animal production industry, demonstrate the need for adapted measures to limit the prevalence of ExPEC in animal reservoirs while reducing the use of antimicrobials as much as possible.  相似文献   

9.
S pili are members of the chaperone-usher-pathway-assembled pili family that are predominantly associated with neonatal meningitis (SII) and believed to play a role in ascending urinary tract infections (SI). We used force-measuring optical tweezers to characterize the intrinsic biomechanical properties and kinetics of SII and SI pili. Under steady-state conditions, a sequential unfolding of the layers in the helix-like rod occurred at somewhat different forces, 26 pN for SII pili and 21 pN for SI pili, and there was an apparent difference in the kinetics, 1.3 and 8.8 Hz. Tests with bacteria defective in a newly recognized sfa gene (sfaX II) indicated that absence of the sfaX II gene weakens the interactions of the fimbrium slightly and decreases the kinetics. Data of SI are compared with those of previously assessed pili primary associated with urinary tract infections, the P and type 1 pili. S pili have weaker layer-to-layer bonds than both P and type 1 pili, 21, 28 and 30 pN, respectively. In addition, the S pili kinetics are ~10 times faster than the kinetics of P pili and ~550 times faster than the kinetics of type 1 pili. Our results also show that the biomechanical properties of pili expressed ectopically from a plasmid in a laboratory strain (HB101) and pili expressed from the chromosome of a clinical isolate (IHE3034) are identical. Moreover, we demonstrate that it is possible to distinguish, by analyzing force-extension data, the different types of pili expressed by an individual cell of a clinical bacterial isolate.  相似文献   

10.
11.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by > or = 8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (< or = 3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

12.
The clonal relationship of thirty E. coli strains of 0 antigen serotype 06 isolated from human, dog, pig or cow infections were investigated. Two main clones with serotypes 06 : H1 or 06 : H31, H- were identified. Isolates from humans, dogs, pigs and cows were found in both clones, indicating that animals are a possible source for human extraintestinal Escherichia coli strains. Two human ETEC (06 : H16) and two pig isolates (06 : H10) were not related to the 06 : H1 or 06 : H31, H- E. coli clones.  相似文献   

13.
Frequent unintended secondary mutations occurred in extraintestinal pathogenic Escherichia coli strains CP9, CFT073, and RS218 during suicide plasmid-mediated, putatively specific deletions of hlyA, papG allele III, and iha. Pulsed-field gel electrophoresis and PCR analyses demonstrated genomic alterations and/or unintended loss of defined virulence genes (papG, the F7-2 papA allele, iutA, sat, hlyD, and cnf). Caution is warranted when attributing the observed phenotypic changes to the intended mutation.  相似文献   

14.
The evolutionary origins of extraintestinal pathogenic Escherichia coli (ExPEC) remain uncertain despite these organisms' relevance to human disease. A valid understanding of ExPEC phylogeny is needed as a framework against which the observed distribution of virulence factors and clinical associations can be analyzed. Accordingly, phylogenetic relationships were defined by multi-locus sequence analysis among 44 representatives of selected ExPEC clonal groups and the E. coli Reference (ECOR) collection. Recombination, which significantly obscured the phylogenetic signal for several strains, was dealt with by excluding strains or specific sequences. Conflicting overall phylogenies, and internal phylogenies for virulence-associated phylogenetic group B2, were inferred depending on the specific dataset (i.e., how extensively purged of recombination), outgroup (Salmonella enterica and/or Escherichia fergusonii), and analysis method (neighbor joining, maximum parsimony, maximum likelihood, or Bayesian likelihood). Nonetheless, the major E. coli phylogenetic groups A, B1, and B2 were consistently well resolved, as was a major sub-component of group D and an ECOR 37-O157:H7 clade. Moreover, nine important ExPEC clonal groups within groups B2 and D, characterized by serotypes O6:K2:H1, O18:K1:H7, O6:H31, and O4:K+:H+ (from group B2), and O1:K1:H-, O7:K1:H-, O157:K+:H (non-7), O15:K52:H1, and O11/17/77:K52:H18 ("clonal group A") (from group D), were consistently well resolved, regardless of clinical background (cystitis, pyelonephritis, neonatal meningitis, sepsis, or fecal), host group, geographical origin, and virulence profile. Among the group B2-derived clonal groups the O6:K2:H1 clade appeared basal. Within group D, "clonal group A" and the O15:K52:H1 clonal group were consistently placed with ECOR 47 and ECOR 44, respectively, as nearest neighbors. These findings clarify phylogenetic relationships among key ExPEC clonal groups but also emphasize that recombination appears to obscure the oldest evolutionary relationships, despite extensive targeted sequencing and use of a wide range of analysis techniques.  相似文献   

15.
Antibiotic resistance of Escherichia coli from sows and pigs was determined to compare patterns between pigs of various ages and degrees of antibiotic use. Resistance patterns differed between farm types and pigs of differing ages, indicating that pig age and degree of antibiotic use affect resistance of fecal E. coli.  相似文献   

16.
Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a DeltatolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis.  相似文献   

17.
Extraintestinal pathogenic Escherichia coli (ExPEC) are able to colonize, invade and induce disease in body niches outside the gastrointestinal tract. The emergence of (multi)resistant ExPEC variants calls for alternative antimicrobial strategies with a reduced pressure on selection of antibiotic resistances. We report on recent research efforts to target such virulence traits or to interfere with ExPEC colonization of extraintestinal niches in order to prevent or treat ExPEC infections and reduce the risk of further emergence of antibiotic resistances.  相似文献   

18.
Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations.  相似文献   

19.
In this study, 200 Escherichia coli isolates from 22 rainwater tank samples in Southeast Queensland, Australia, were tested for the presence of 20 virulence genes (VGs) associated with intestinal and extraintestinal pathotypes. In addition, E. coli isolates were also classified into phylogenetic groups based on the detection of the chuA, yjaA, and TSPE4.C2 genes. Of the 22 rainwater tanks, 8 (36%) and 5 (23%) were positive for the eaeA (belonging to enteropathogenic E. coli [EPEC] and Shiga-toxigenic E. coli [STEC]) and ST1 (belonging to enterotoxigenic E. coli [ETEC]) genes, respectively. VGs (cdtB, cvaC, ibeA, kpsMT allele III, PAI, papAH, and traT) belonging to extraintestinal pathogenic E. coli (ExPEC) were detected in 15 (68%) of the 22 rainwater tanks. Of the 22 samples, 17 (77%) and 11 (50%) contained E. coli belonging to phylogenetic groups A and B1, respectively. Similarly, 10 (45%) and 16 (72%) contained E. coli belonging to phylogenetic groups B2 and D, respectively. Of the 96 of the 200 strains from 22 tanks that were VG positive, 40 (42%) were carrying a single VG, 36 (37.5%) were carrying two VGs, 17 (18%) were carrying three VGs, and 3 (3%) had four or more VGs. This study reports the presence of multiple VGs in E. coli strains belonging to the STEC, EPEC, ETEC, and ExPEC pathotypes in rainwater tanks. The public health risks associated with potentially clinically significant E. coli in rainwater tanks should be assessed, as the water is used for drinking and other, nonpotable purposes. It is recommended that rainwater be disinfected using effective treatment procedures such as filtration, UV disinfection, or simply boiling prior to drinking.  相似文献   

20.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号