首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian sperm must be highly motile for a long time to fertilize a egg. It has been supposed that ATP required for sperm flagellar movement depends predominantly on mitochondrial respiration. We assessed the contribution of mitochondrial respiration to mouse sperm motility. Mouse sperm maintained vigorous motility with high beat frequency in an appropriate solution including a substrate such as glucose. The active sperm contained a large amount of ATP. When carbonyl cyanide m-chlorophenylhydrazone (CCCP) was applied to suppress the oxidative phosphorylation in mitochondria, the vigorous motility was maintained and the amount of ATP was kept at the equivalent level to that without CCCP. When pyruvate or lactate was provided instead of glucose, both sperm motility and the amount of ATP were high. However, they were drastically decreased when oxidative phosphorylation was suppressed by addition of CCCP. We also found that sperm motility could not be maintained in the presence of respiratory substrates when glycolysis was suppressed. 2-Deoxy-d-glucose (DOG) had no effect on mitochondrial respiration assessed by a fluorescent probe, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), but, it inhibited motility and decreased ATP content when pyruvate or lactate were provided as substrates. The present results suggest that glycolysis has an unexpectedly important role in providing the ATP required for sperm motility throughout the length of the sperm flagellum.  相似文献   

2.
The initiation of motility and modification of energy metabolism of rat caudal epididymal spermatozoa can be induced by dilution in a saline medium. We have investigated in these cells the relationships between the energy reserve (sperm ATP content measured by bioluminescence) and flagellar movement (high speed videomicrography, 200 frames/sec). A steady state was observed in sperm ATP content, progressive velocity (Vp) and flagellar beat frequency (F) with sperm dilution in a medium with glucose, lactate, pyruvate and acetate substrates after 30 minutes of incubation. Without these substrates, changes in metabolic pathways occurred immediately and initially disturbed the relationship between ATP levels and F, suggesting differences in motility initiation when energy is from an endogenous origin via mitochondrial oxidative phosphorylation. This "energy crisis" was reversed by the addition of substrates to the medium. The three-dimensional flagellar movement observed in the presence of substrates quickly became two-dimensional in their absence. The flagellar beat envelope became more splayed, the mean amplitude of lateral head displacement increased and F decreased. The resulting high flagellar beat efficiency can be compared to that observed during hyperactivation which is a physiological event related to a fall in intracellular ATP level. In both media, the displacement of the flagellum in relation to the wave axis varied sinusoidally. The sine period increased with time when the spermatozoa were incubated in the medium without substrates. These results suggest a gradual slowing-down of the velocity of wave formation in the proximal part of the flagellum.  相似文献   

3.
At mating, mammalian sperm are diluted in the male and female reproductive fluids, which brings contact with HCO(3)(-) and initiates several cellular responses. We have identified and studied two of the most rapid of these responses. Stop-motion imaging and flagellar waveform analysis show that for mouse epididymal sperm in vitro, the resting flagellar beat frequency is 2-3 Hz at 22-25 degrees C. Local perfusion with HCO(3)(-) produces a robust, reversible acceleration to 7 Hz or more. At 15 mM the action of HCO(3)(-) begins within 5 seconds and is near-maximal by 30 seconds. The half-times of response are 8.8+/-0.2 seconds at 15 mM HCO(3)(-) and 17.5+/-0.4 seconds at 1 mM HCO(3)(-). Removal of external HCO(3)(-) allows a slow return to basal beat frequency over approximately 10 minutes. Increases in beat symmetry accompany the accelerating action of HCO(3)(-). As in our past work, HCO(3)(-) also facilitates opening of voltagegated Ca(2+) channels, increasing the depolarization-evoked rate of rise of intracellular Ca(2+) concentration by more than fivefold. This action also is detectable at 1 mM HCO(3)(-) and occurs with an apparent halftime of approximately 60 seconds at 15 mM HCO(3)(-). The dual actions of HCO(3)(-) respond similarly to pharmacological intervention. Thus, the phosphodiesterase inhibitor IBMX promotes the actions of HCO(3)(-) on flagellar and channel function, and the protein kinase A inhibitor H89 blocks these actions. In addition, a 30 minute incubation with 60 micro M cAMP acetoxylmethyl ester increases flagellar beat frequency to nearly 7 Hz and increases the evoked rates of rise of intracellular Ca(2+) concentration from 17+/-4 to 41+/-6 nM second(-1). However, treatment with several other analogs of cAMP produces only scant evidence of the expected mimicry or blockade of the actions of HCO(3)(-), perhaps as a consequence of limited permeation. Our findings indicate a requirement for cAMP-mediated protein phosphorylation in the enhancement of flagellar and channel functions that HCO(3)(-) produces during sperm activation.  相似文献   

4.
HCO(3) (-) is the signal for early activation of sperm motility. In vivo, this occurs when sperm come into contact with the HCO(3) (-) containing fluids in the reproductive tract. The activated motility enables sperm to travel the long distance to the ovum. In spermatozoa HCO(3) (-) stimulates the atypical sperm adenylyl cyclase (sAC) to promote the cAMP-mediated pathway that increases flagellar beat frequency. Stimulation of sAC may occur when HCO(3) (-) enters spermatozoa either directly by anion transport or indirectly via diffusion of CO(2) with subsequent hydration by intracellular carbonic anhydrase (CA). We here show that murine sperm possess extracellular CA IV that is transferred to the sperm surface as the sperm pass through the epididymis. Comparison of CA IV expression by qRT PCR analysis confirms that the transfer takes place in the corpus epididymidis. We demonstrate murine and human sperm respond to CO(2) with an increase in beat frequency, an effect that can be inhibited by ethoxyzolamide. Comparing CA activity in sperm from wild-type and CA IV(-/-) mice we found a 32.13% reduction in total CA activity in the latter. The CA IV(-/-) sperm also have a reduced response to CO(2). While the beat frequency of wild-type sperm increases from 2.86±0.12 Hz to 6.87±0.34 Hz after CO(2) application, beat frequency of CA IV(-/-) sperm only increases from 3.06±0.20 Hz to 5.29±0.47 Hz. We show, for the first time, a physiological role of CA IV that supplies sperm with HCO(3) (-), which is necessary for stimulation of sAC and hence early activation of spermatozoa.  相似文献   

5.
Flagellar movement of intact and demembranated, reactivated ram spermatozoa   总被引:2,自引:0,他引:2  
The flagellar movement of intact ejaculated ram sperm, and of demembranated models reactivated with ATP, has been studied using high-speed, high-resolution video microscopy. Intact sperm attached to the coverslip by their heads had an average beat frequency of 20.9 Hz and an average wave amplitude of 20.2 micron. There was little difference in the beat frequency or waveform of these sperm and sperm swimming freely near the coverslip or captured by their heads with a micropipette and held far from the coverslip, indicating that the flagellar waveform of ram sperm is relatively resistant to distortion as a result of immobilization of the head or proximity to a surface. The beat envelope was nearly planar as determined by observations of free-swimming sperm and sperm captured by their head and oriented so they were beating either parallel or perpendicular to the plane of focus. The effect of various conditions for demembranation and reactivation of the sperm were examined. Treatment of sperm with 0.2% Triton X-100 removed most of their plasma membrane. Under optimal conditions, nearly 100% of the demembranated sperm reactivated at MgATP2- concentrations ranging from approximately 4 microM to approximately 20 mM. From approximately 1 mM to approximately 10 mM MgATP2-, their beat pattern closely resembled that of intact sperm; beat frequency depended on MgATP2- concentration. Percent motility was maximal between pH 7.5 and 8.0 and decreased sharply below pH 7.0 and above pH 8.5. The addition of 50 microM cAMP to the reactivation medium had no effect on percent motility or the beat pattern and did not accelerate the initiation of movement.  相似文献   

6.
We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.  相似文献   

7.
The movement of live trout spermatozoa is very brief (25 sec at 20 degrees C) and conditions have been developed to get synchronous initiation of sperm motility which allowed quantification of the major parameters of sperm movement during the motility phase. Recorded flagellar beat frequencies decreased steadily from values of 55 Hz at the beginning to 20 Hz at the end of the motility phase. Sperm forward velocities followed a similar pattern from 250 to 20 microns.sec-1 in the same conditions and the diameters of sperm trajectories were reduced from 370 to 40 microns. Thus none of the characteristics of sperm movement was constant during the motile phase which ended abruptly by a straightening of the flagella. The decrease in flagellar beat frequencies and sperm velocities are much greater than what could be extrapolated from the decrease of intracellular ATP (Christen R. et al: Eur. J. Biochem, 166: 667-671, 1987) or from measurements of ATP-dependence of reactivated sperm velocities (Okuno M. and Morisawa N.: In Biological Functions of Microtubules and Related Structures. New York: Academic Press, pp. 151-162, 1982). Therefore, the cessation of flagellar beating at 25 sec is not directly the result of the low concentration of intracellular ATP. The decrease in the diameters of sperm trajectories which occurred during the first part of the motility phase was correlated with [Ca]i measurements (Cosson M.P. et al, Cell Motil. Cytoskeleton, 14:424-434, 1989). The effect of Ca2+ at the axonemal level does not indicates that Ca2+ influx is previous to flagellar beating but rather suggests a classical Ca2+ regulation of the flagellar assymetry. The short duration of the motility phase and the characteristics of sperm movement were very similar in various conditions (high external K+, low pH media) where increased external Ca2+ or divalent ions were shown to overcome K+ and H+ inhibition of sperm motility, both conditions which have been shown to depolarize the plasma membrane potential (Gatti J.L. et al: J. Cell Physiol., 143:546-554, 1990). The present study of the parameters of sperm movement suggests that once motility is initiated, a defined set of axonemal events will take place whatever the external conditions.  相似文献   

8.
In the heart, the opening of sarcolemmal ATP-sensitive K(+) (K(ATP)) channels seems to be crucial for the cardiac protection against hypoxia/ischaemia. In the present study, we have exposed cardiomyocytes under hypoxia to high extracellular glucose (30 mM). Under these conditions, intracellular concentration of 1,3-bisphosphoglycerate has increased confirming stimulation of glycolysis. Perforated patch-clamp electrophysiology revealed that hypoxia induces whole-cell K(+) current in cardiomyocytes more efficiently in the presence than in the absence of high glucose. Glucose significantly promoted survival of cardiomyocytes exposed to hypoxia. HMR 1098, an antagonist of sarcolemmal K(ATP) channels, inhibited glucose-induced activation of whole-cell K(+) current during hypoxia as well as glucose-mediated cytoprotection. An inhibitor of glyceraldehyde 3-phosphate dehydrogenase, iodoacetate, inhibited glycolysis in hypoxia and blocked the activation of sarcolemmal K(ATP) channels. Based on the obtained results, we conclude that the activation of sarcolemmal K(ATP) channels is involved in glucose-mediated cardioprotection.  相似文献   

9.
Demembranated sea urchin sperm were extracted with 0.5 M KCl as described earlier and reactivated in a solution containing 1 mM ATP. Their flagellar beat frequency was approximately 13 Hz, while that of standard reactivated sperm which had not been extracted with KCl was approximately 31 Hz at 23°C. Addition of soluble dynein 1 caused a gradual increase in the flagellar beat frequency to approximately 25 Hz after 10 min at room temperature. This restoration of frequency occurred in the absence or presence of ATP. Examination by electron microscopy showed that, whereas KCl-extracted sperm were lacking the majority of the outer arms on the doublet tubules, they had regained most of their outer arms following incubation with soluble dynein 1.  相似文献   

10.
Mammalian sperm metabolism: oxygen and sugar, friend and foe   总被引:1,自引:0,他引:1  
Mammalian spermatozoa expend energy, generated as intracellular ATP, largely on motility. If the sperm cell cannot swim by use of its flagellar motion, it cannot fertilize the egg. Studies of the means by which this energy is generated span a period of six decades. This review gives an overview of these studies, which demonstrate that both mitochondrial oxidative phosphorylation, for which oxygen is friend, and glycolysis, for which sugar is friend, can provide the energy, independent of one another. In mouse sperm, glycolysis appears to be the dominant pathway; in bull sperm, oxidative phosphorylation is the predominant pathway. In the case of bull sperm, the high activity of the glycolytic pathway would maintain the intracellular pH too low to allow sperm capacitation; here sugar is enemy. The cow's oviduct has very low glucose concentration, thus allowing capacitation to go forward. The choice of the pathway of energy generation in vivo is set by the conditions in the oviduct of the conspecific female. The phospholipids of the sperm plasma membrane have a high content of polyunsaturated fatty acids represented in their acyl moieties, rendering them highly susceptible to lipid peroxidation; in this case oxygen is enemy. But the susceptibility of the sperm membrane to lethal damage by lipid peroxidation allows the female oviduct to dispose of sperm that have overstayed their welcome, and so keep in balance sperm access to the egg and sperm removal once this has occurred.  相似文献   

11.
The motility of demembranated bull sperm was found to be governed by the concentrations of cyclic adenosine 3', 5'-monophosphate (cAMP) and Ca2+ at low pH (6.6-7.1), and was less sensitive to these variables at higher pH (7.4-7.8). Although motility was generally found to increase with increasing pH in the range from 6.6 to 7.8, the addition of exogenous cAMP markedly and selectively improved the motility at the lower end of the range (pH 6.6-7.1). In the presence of 10 microM cAMP, low Ca2+ (8.0 X 10(-8) M), and a high concentration of Mg-adenosine 5'-triphosphate (ATP, 8 mM), demembranated sperm at pH 6.8 and 7.1 exhibited swimming similar to that of live ejaculated sperm. At a free Ca2+ concentration of 4.4 X 10(-5) M, the motility was rapidly inhibited at pH 6.8-7.1, whereas at pH 7.4-7.8, the activity was not greatly affected. Since calcium is known to antagonize the cAMP pathway by activating Ca2+-dependent phosphodiesterase and Ca2+-dependent phosphatase, this further supports the idea that cAMP-dependent activation is crucial for motility at low pH. Our results demonstrate that the flagellar axoneme can function normally at relatively acidic pH, and produce vigorous swimming at high levels of ATP. The ATP content of live sperm was measured and found to be high enough (approximately 8 mM) to support the vigorous motility seen at pH 6.6-7.1 in the models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.  相似文献   

13.
It has recently been reported that the exposure of human spermatozoa to an extremely low frequency (ELF) electromagnetic field (EMF) with a square waveform of 5 mT amplitude and frequency of 50 Hz improves sperm motility. The functional relationship between the energy metabolism and the enhancement of human sperm motility induced by ELF‐EMF was investigated. Sperm exposure to ELF‐EMF resulted in a progressive and significant increase of mitochondrial membrane potential and levels of ATP, ADP and NAD+ that was associated with a progressive and significant increase in the sperm kinematic parameters. No significant effects were detected on other parameters such as ATP/ADP ratio and energy charge. When carbamoyl cyanide m‐chlorophenylhydrazone (CICCP) was applied to inhibit the oxidative phosphorylation in the mitochondria, the values of energy parameters and motility in the sperm incubated in the presence of glucose and exposed to ELF‐EMF did not change, thus indicating that the glycolysis was not involved in mediating ELF‐EMF stimulatory effect on motility. By contrast, when pyruvate and lactate were provided instead of glucose, the energy status and motility increased significantly in ELF‐EMF‐treated sperm. Under these culture conditions, the inhibition of glycolitic metabolism by 2‐deoxy‐D ‐glucose (DOG) again resulted in increased values of energy and kinematic parameters, indicating that gluconeogenesis was not involved in producing glucose for use in glycolysis. We concluded that the key role in mediating the stimulatory effects exerted by ELF‐EMF on human sperm motility is played by mitochondrial oxidative phosphorylation rather than glycolysis. Bioelectromagnetics 32:15–27, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The relation between oxygen consumption and motility of Ciona spermatozoa has been measured by using pH stats to measure the acid production of spermatozoa swimming in dilute suspensions where their motility can be analyzed accurately, and calibrating the acid production by measuring it simultaneously with measurements of oxygen consumption, using more concentrated sperm suspensions. When the motility of the spermatozoa is inhibited by thiourea or by increased viscosity, their oxygen consumption decreases in proportion to the decrease in beat frequency. 80–85 % of their oxygen consumption appears to be tightly coupled to motility. The amount of movement-coupled oxidative metabolism per beat remains nearly constant, even when there are significant changes in the energy required per beat for movement against the viscous resistance of the medium. This implies that under these conditions, where the radius of curvature of flagellar bending remains constant, the amount of ATP used is determined by a stoichiometric relation to bending rather than by the energy requirement. The movement-coupled oxidative metabolism appears to be sufficient to generate approximately two molecules of ATP per beat for each molecule of the flagellar ATPase, dynein.  相似文献   

15.
Sperm motility in flatfishes shows unique characteristics. The flagellar movement either in vivo or in permeabilized models is arrested by the presence of 25-100 mM HCO3-, or by gentle perfusion with CO2 gas. To understand the molecular basis of this property, sperm Triton-soluble proteins and flagellar proteins from several species were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. An abundant 29-kDa protein was observed only in flatfish species. Partial amino acid sequences identified this protein as a carbonic anhydrase, an enzyme involved in the interconversion of CO2 and HCO3-. 6-ethoxyzolamide, a specific inhibitor of carbonic anhydrase inhibits sperm motility, especially at low pH. In the case of HCO3(-)-arrested sperm, the motility is restored by addition of 6-ethoxyzolamide. Taken together, these results suggest that a novel pH/HCO3(-)-dependent regulatory mechanism mediated by carbonic anhydrase is involved in the motility control in flatfish sperm.  相似文献   

16.
We synthesized an anthraniloyl ATP (ant-ATP), which has a fluorescent anthraniloyl moiety at the OH group of ribose, to elucidate the mechanism of flagellar bend formation and its propagation in relation to the mechanochemical cycle of dynein ATPase. This fluorescent analog of ATP was efficiently hydrolyzed by 21 S dynein from sea urchin sperm flagella with Km = 7.6 microM, whereas the Km was 12 microM when ATP was used as the substrate. Similar Vmax values were obtained with both ATP and ant-ATP. Inhibition of the hydrolysis of ant-ATP by vanadate was a little smaller than that with ATP. Photosensitized cleavage of 21 S dynein heavy chains in the presence of ant-ATP and vanadate was also a little less efficient than that in the presence of ATP and vanadate. Ant-ATP also induced the disintegration of the trypsin-treated axoneme and the motility of demembranated sperm in a manner similar to ATP. When ATP was used as a substrate for the demembranated sperm, the apparent Michaelis constant for beat frequency (Km f) was 0.22 mM and the maximum frequency (fmax) was 36 Hz, whereas Km f) was 0.14 mM and fmax was 20 Hz for ant-ATP. Thus ant-ATP could be an efficient fluorescent analog of ATP for studying dynein ATPase and the mechanisms of flagellar motility.  相似文献   

17.
In Hank's balanced salt solution EL-4 ascites thymoma cells possessed endogenous respiration which was sufficient for the maintenance of their ATP level: pH decrease down to 6.0 had no effect either on endogenous respiration or the ATP level. Glucose had no influence on the respiration of EL-4 cells but inhibited that of Ehrlich ascites carcinoma (EAC) cells by 40% (Crabtree effect); respiration of the both cell lines was strongly (4-fold) inhibited after simultaneous addition of glucose, lactate and pH decrease. EL-4 cells had no endogenous glycolysis; EAC cells showed a low level of glycolysis only after pH decrease. Glucose addition led to activation of glycolysis (both inhibited 2-fold after a decrease of pH down to 6.0. The respiration inhibition at pH 7.3 and 6.0 caused no decrease of ATP depletion when glucose was present in the medium; this result may be due to suppression of ATP consumption. Incubation of EL-4 cells under respiration and glycolysis deficiency conditions resulted in a sharp ATP depletion; pH decrease delayed this depletion.  相似文献   

18.
A nonhydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP), has been used to study the role of ATP binding in flagellar motility. Sea urchin sperm of Lytechinus pictus were demembranated, reactivated, and locked in "rigor waves" by a modification of the method of Gibbons and Gibbons (11). Rigor wave sperm relaxed within 2 min after addition of 4 micrometer ATP, and reactivated upon addition of 10-12 micrometer ATP. The beat frequency of the reactivated sperm varied with ATP concentration according to Michaelis-Menten kinetics ("Km" = 0.24 mM; "Vmax" = 44 Hz) and was competitively inhibited by AMP-PNP (Ki" approximately to 8.1 mM). Rigor wave sperm were completely relaxed (straightened) within 2 min by AMP-PNP at concentrations of 2-4 mM. The possibilities that relaxation in AMP-PNP was a result of ATP contamination, AMP-PNP hydrolysis, or lowering of the free Mg++ concentration were conclusively ruled out. The results suggest that dynein cross-bridge release is dependent upon ATP binding but not hydrolysis.  相似文献   

19.
The flagellar beat of hyperactivated Suncus spermatozoa was analyzed by digital imaging and was compared to that of the nonhyperactivated (activated) spermatozoa in order to examine the function of the accessory fibers during the flagellar beat and the sliding filament mechanism inducing the motility of the hyperactivated spermatozoa. Unusual large and long characteristics of the accessory fibers were involved in generating the gently curved bends and a low beat frequency. Examination of the motility parameters of the flagellar beat of the activated and hyperactivated spermatozoa attached to a slide glass by their heads revealed that there were two beating modes: a frequency-curvature dependent mode in the activated flagellar beat and a nearly constant frequency mode in the hyperactivated flagellar beat. The hyperactivated flagellar beat was characterized by sharp bends in the proximal midpiece and a low beat frequency. The sharp bends in the proximal midpiece were induced by the increase in the total length of the microtubule sliding at the flagellar base. The rate of microtubule sliding (sliding velocity) in the axoneme remained almost constant in the flagellar beat of both the activated and hyperactivated spermatozoa. Comparison of the sliding velocity in Suncus, golden hamster, monkey, and sea urchin sperm flagella with their stiffness suggests that the sliding velocity is determined by the stiffness at the flagellar base and that the same sliding microtubule system functions in both mammalian and echinoderm spermatozoa.  相似文献   

20.
Hyperactivated motility, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization in vivo. It is characterized by high-amplitude flagellar waves and, usually, highly asymmetrical flagellar beating. It had been suggested, but not tested, that Ca2+ and cAMP switch on hyperactivation by directly affecting the flagellar axoneme. In this study, the direct affects of these agents on the axoneme were tested by using detergent-demembranated bull sperm. As confirmed by TEM, treatment of sperm with 0.2% Triton X-100 disrupted the plasma, acrosomal, and inner mitochondrial membranes, leaving axonemes intact. In the presence of 2 mM ATP, the percentage of reactivated sperm that were hyperactivated increased to 80% when free Ca2+ was increased from 50 to 400 nM. The effect of the Ca2+ in this range was to increase beat asymmetry by increasing the curvature of the principal bend. No additional increases were observed above 400 nM free Ca2+, but motility was suppressed at 1 mM. The ability of Ca2+ to produce hyperactivation depended on ATP availability, such that more ATP was required to produce the high amplitude flagellar bends characteristic of hyperactivated motility than to produce activated motility. Cyclic AMP was not required for reactivation, nor for hyperactivation. Production of hyperactivated motility also required an alkaline environment (pH 7.9-8.5). These results suggest that, provided sufficient ATP is present and pH is sufficiently alkaline, Ca2+ switches on hyperactivation by enabling curvature of the principal bends to increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号