首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mihailidou AS  Funder JW 《Steroids》2005,70(5-7):347-351
Fifteen years ago Wehling and colleagues showed unequivocal rapid effects of aldosterone, neither mimicked by cortisol nor blocked by spironolactone, and postulated that these nongenomic effects are mediated via a membrane receptor distinct from the classical mineralocorticoid receptor (MR). Several recent studies have challenged this view. Alzamora et al. showed 11beta-hydroxysteroid denydrogenase 1 and 2 (11betaHSD1, 11betaHSD2) expression in human vascular smooth muscle cells, and that aldosterone rapidly raises intracellular pH via sodium-hydrogen exchange; cortisol is without effect and spironolactone does not block the aldosterone response. When, however, 11betaHSD activity is blocked by carbenoxolone, cortisol shows agonist effects indistinguishable from aldosterone; in addition, the effect of both aldosterone and cortisol is blocked by the open E-ring, water soluble MR antagonist RU28318. In rabbit cardiomyocytes, aldosterone increases intracellular [Na+] by activating Na+/K+/2Cl- cotransport, with secondary effects on Na+/K+ pump activity. Pump current rises approximately 10-fold within 15', is unaffected by actinomycin D or the MR antagonist canrenone, and not elevated by cortisol. Pump current is, however, completely blocked by the open E-ring, water soluble MR antagonist K+ canrenoate and stoichometrically by cortisol. PKCepsilon agonist peptides (but not PKCalpha, PKCdelta or scrambled PKCepsilon peptides) mimic the effect of aldosterone, and PKCepsilon antagonist peptides block the effect. Very recently, cortisol has been shown to mimic the effect of aldosterone when cardiomyocyte redox state is altered by the installation of oxidized glutathione (GSSG) via the pipet, paralleling the effect of carbenoxolone on vascular smooth cells and suggesting possible pathophysiologic roles for an always glucocorticoid occupied MR.  相似文献   

2.
Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-kappaB and upregulation of TNF-alpha related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 +/- 3.7 vs. 109.4 +/- 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 +/- 2.6 vs. 6.1 +/- 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-kappaB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group (P = 0.007). ELISA indicated that renal protein levels of TNF-alpha, but not IL-6, interferon-gamma, and CCL28, were significantly higher in the HS than the LS group (2.3 +/- 0.8 vs. 0.7 +/- 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-alpha were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-kappaB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-kappaB and upregulation of TNF-alpha are the important renal mechanisms linking proinflammatory response to SS hypertension.  相似文献   

3.
Ligand binding is the first step in hormone regulation of mineralocorticoid receptor (MR) activity. Here, we report multiple crystal structures of MR (NR3C2) bound to both agonist and antagonists. These structures combined with mutagenesis studies reveal that maximal receptor activation involves an intricate ligand-mediated hydrogen bond network with Asn770 which serves dual roles: stabilization of the loop preceding the C-terminal activation function-2 helix and direct contact with the hormone ligand. In addition, most activating ligands hydrogen bond to Thr945 on helix 10. Structural characterization of the naturally occurring S810L mutant explains how stabilization of a helix 3/helix 5 interaction can circumvent the requirement for this hydrogen bond network. Taken together, these results explain the potency of MR activation by aldosterone, the weak activation induced by progesterone and the antihypertensive agent spironolactone, and the binding selectivity of cortisol over cortisone.  相似文献   

4.
High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP+, NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats.  相似文献   

5.
Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.  相似文献   

6.
There has in recent years been great concern about possible cardiac side effects of thiazolidinediones (TZDs). We present a case-report of a 60 year-old male who developed significant mitral regurgitation during six months treatment with pioglitazone in parallel with laboratory indications of fluid retention. Echocardiography six months after discontinuation of medication showed regression of mitral regurgitation and the laboratory parameters were also normalized. It is noteworthy that six months treatment with pioglitazone could induce significant valve dysfunction, which was reversible, and this underlines the importance of carefully monitoring patients when placing them on treatment with TZDs.  相似文献   

7.
Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion, and reduced ascites formation to the same degree as direct inhibition of MR with K-canrenoate. Total potassium balance was negative in the BDL rats, whereas renal potassium excretion was unchanged. In the distal colon, expression of ENaC was increased in BDL rats. Fecal potassium excretion was increased in cirrhotic rats, and this was corrected by treatment with K-canrenoate but not dexamethasone. We conclude that development of sodium retention and decompensation in cirrhotic rats is associated with downregulation of renal 11beta-HSD-2 activity and inappropriate activation of renal sodium reabsorption by endogenous glucocorticoids. In addition, the overall potassium loss in the BDL model is due to increased fecal potassium excretion, which is associated with upregulation of ENaC in distal colon.  相似文献   

8.
Antagonism in the human mineralocorticoid receptor.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

9.
Currently, gene disruption by homologous recombination in embryonic stem cells is only feasible in mice. To circumvent this problem, we silenced mineralocorticoid receptor (MR) expression by RNA interference in knockdown rats generated through lentiviral transgenesis. Analysis of the F1 progeny at 3 wk of age revealed strongly decreased MR levels. This was specific for the targeted gene and related to the abundance of the short interfering RNA. Reminiscent of MR knockout mice, the transgenic rats showed a reduced body weight, elevated serum aldosterone levels, increased plasma renin activity, and altered expression of MR target genes. Some of these effects correlated with the degree to which MR mRNA expression was reduced. Whereas disruption of the MR by gene targeting in mice leads to postnatal death, our strategy also allowed obtaining adult knockdown rats with defects in hormone and electrolyte homeostasis resembling pseudohypoaldosteronism. In conclusion, this is the first example of a human disease model based on RNA interference in rats.  相似文献   

10.
The Randomized Aldactone Evaluation Study (RALES) demonstrated a substantial clinical benefit to blocking the effects of aldosterone (Aldo) in patients with heart failure. We recently demonstrated that the enhanced renal conservation of sodium and water in rats with heart failure can be reduced by blocking the central nervous system effects of Aldo with the mineralocorticoid receptor (MR) antagonist spironolactone (SL). Preliminary data from our laboratory suggested that central MR might contribute to another peripheral mechanism in heart failure, the release of proinflammatory cytokines. In the present study, SL (100 ng/h for 21 days) or ethanol vehicle (Veh) was administered via the 3(rd) cerebral ventricle to one group of rats after coronary ligation (CL) or sham CL (Sham) to induce congestive heart failure (CHF). In Veh-treated CHF rats, tumor necrosis factor-alpha (TNF-alpha) levels increased during day 1 and continued to increase throughout the 3-wk observation period. In CHF rats treated with SL, started 24 h after CL, TNF-alpha levels rose initially but retuned to control levels by day 5 after CL and remained low throughout the study. These findings suggest that activation of MR in the central nervous system plays a critical role in regulating TNF-alpha release in heart failure rats. Thus some of the beneficial effect of blocking MR in heart failure could be due at least in part to a reduction in TNF-alpha production.  相似文献   

11.
Central infusion of an angiotensin type 1 (AT(1)) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ~25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT(1) receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.  相似文献   

12.
The effects of endothelin (ET) receptor blockade on energy utilization in heart failure (HF) are unknown. We administered ET type A (ETA), ET type B (ETB), and ETA/ETB antagonists to isolated hearts from Dahl salt-sensitive (DS) rats with HF and controls. Contractile efficiency was assessed as slope-1 of myocardial O consumption (VO2)-pressure-volume area relation. In HF, ETA and ETA/ETB but not ETB blockade decreased the contractility index (Emax)(-15 +/- 3% and -17 +/- 2%, P < 0.05), excitation-contraction (E-C) coupling VO2 (-39 +/- 4% and -37 +/- 5%, P < 0.01), and efficiency (-15 +/- 4% and -17 +/- 2%, P < 0.05). Despite decreased efficiency, ETA and ETA/ETB blockade decreased total VO2 (-24 +/- 3% and -22 +/- 2%, P < 0.05). Na+/H+ exchanger inhibition decreased Emax and E-C coupling VO2 similar to ETA and ETA/ETB blockade, but did not alter efficiency. In HF, endogenous ET-1 maintains contractility at expense of increased VO2 through ETA receptor activation, likely mediated by Na+/H+ exchange.  相似文献   

13.
The angiotensin II type 1 (AT(1)) receptor is a G protein-coupled receptor that has a crucial role in the development of load-induced cardiac hypertrophy. Here, we show that cell stretch leads to activation of the AT(1) receptor, which undergoes an anticlockwise rotation and a shift of transmembrane (TM) 7 into the ligand-binding pocket. As an inverse agonist, candesartan suppressed the stretch-induced helical movement of TM7 through the bindings of the carboxyl group of candesartan to the specific residues of the receptor. A molecular model proposes that the tight binding of candesartan to the AT(1) receptor stabilizes the receptor in the inactive conformation, preventing its shift to the active conformation. Our results show that the AT(1) receptor undergoes a conformational switch that couples mechanical stress-induced activation and inverse agonist-induced inactivation.  相似文献   

14.
When grown under oxidative stress, catalatic as well as peroxidatic activity is increased in the Gram-negative bacteriumComamonas terrigena N3H. Two distinct hydroperoxidases were demonstrated by a specific staining. Based on their molar masses and their sensitivity toward 3-amino-1,2,4-triazole and high temperatures, they were identified as dimeric catalase-1 (Cat-1; 150 kDa), and as a tetrameric catalase-2 (Cat-2; 240 kDa) with enhanced peroxidatic activity, respectively. These two catalases differ in their expression during the bacterial growth; whereas the expression of the smaller enzyme (Cat-1) is induced by 0.5 mmol/L peroxides in the medium, and to a lesser degree by 25 mg/L Cd2+, Cat-2 (typical catalase) is almost specifically induced with cadmium ions.  相似文献   

15.
NaCl reabsorption by the thick ascending limb of the loop of Henle (THAL) occurs via the apical Na-K-2Cl cotransporter, NKCC2. Overall, NKCC2 activity and NaCl reabsorption are regulated by the amount of NKCC2 at the apical surface, and also by phosphorylation. Dahl salt-sensitive rats (SS) exhibit higher NaCl reabsorption by the THAL compared with Dahl salt-resistant rats (SR), and they become hypertensive during high-salt (HS) intake. However, the effect of HS on THAL transport, surface NKCC2 expression, and NKCC2 NH(2)-terminus phosphorylation has not been studied. We hypothesized that HS enhances surface NKCC2 and its phosphorylation in THALs from Dahl SS. THAL suspensions were obtained from a group of SS and SR rats on normal-salt (NS) or HS intake. In SR rats THAL NaCl transport measured as furosemide-sensitive oxygen consumption was decreased by HS (-34%, P < 0.05). In contrast, HS did not affect THAL transport in SS rats. As expected, HS increased systolic blood pressure only in SS rats (Δ 23 ± 2 mmHg, P < 0.002) but not in SR rats (Δ 5 ± 3 mmHg). We next tested the effect of HS intake on apical surface NKCC2 and its NH(2)-terminus threonine phosphorylation (P-NKCC2) in SS and SR rats. HS intake decreased surface NKCC2 by 15 ± 2% (P < 0.03) in THALs from SR without affecting total NKCC2 or NH(2)-terminus P-NKCC2. In contrast, in SS rats HS intake increased surface NKCC2 by 54 ± 6% (P < 0.01) without affecting total NKCC2 expression or P-NKCC2. We conclude that HS intake causes different effects on surface NKCC2 in SS and SR rats. Our data suggest that enhanced surface NKCC2 in SS rats might contribute to enhanced NaCl reabsorption in SS rats during HS intake.  相似文献   

16.
17.
de Resende MM  Kauser K  Mill JG 《Life sciences》2006,78(26):3066-3073
Myocardial infarction (MI) activates the renin-angiotensin system in the heart and increases local production of aldosterone. This hormone may increase reactive fibrosis in the myocardium favoring heart failure development. To elucidate the potential contribution of aldosterone to cardiac remodeling following MI, we evaluated the expression of mineralocorticoid receptors (MCR) in the left ventricle (LV) and kidney of rats after MI and captopril treatment. MI was induced by ligation of the coronary artery in Wistar rats, which were separated into (1) sham-operated group, (2) MI group, (3) MI-captopril treated group (cap, 50 mg kg(-1) day(-1)). One month later angiotensin converting enzyme (ACE) activity was assayed in the plasma, LV and kidney. Cardiac and renal angiotensin II (Ang II) levels were determined by ELISA and MCR mRNA expression and protein were measured by Taqman RT-PCR and Western blot, respectively. Cardiac MCR mRNA and protein levels increased nearly by 80% after MI and Cap treatment normalized cardiac MCR protein and mRNA expression. Kidney MCR expression was not affected. ACE activity increased 34% in the plasma and 83% in the LV after MI. This increase was prevented by Cap. Ang II concentration increased 225% in the LV and 193% in kidney, which was partially attenuated by Cap. Our data demonstrate upregulation of MCR in the heart following MI what may facilitate the effects of aldosterone in the ventricular remodeling process. ACE inhibitors may reduce reactive fibrosis not only by decreasing Ang II production but also by attenuating the aldosterone-signaling pathway by decreasing the expression of MCR receptors.  相似文献   

18.
19.
Modulators are proposed to be novel ether aminophosphoglycerides that stabilize unoccupied and occupied glucocorticoid receptor steroid binding and inhibit glucocorticoid receptor complex activation. Two isoforms, modulator 1 and modulator 2, have been purified from rat liver cytosol [Bodine, P.V., & Litwack, G. (1990) J. Biol. Chem. 265, 9544-9554]. Since the mineralocorticoid receptor is relatively resistant to activation, modulator's effect on rat distal colon mineralocorticoid receptor function was examined. Warming of unoccupied receptor decreased residual specific [3H]aldosterone binding by 86 +/- 2%. Both modulator isoforms completely prevented this destabilization with Km's of 2 +/- 1 microM modulator 1 and 24 +/- 5 microM modulator 2. Warming of occupied mineralocorticoid receptors decreased [3H]aldosterone binding by 56 +/- 3%. Modulator only partially stabilized occupied receptor binding with Km's of 10 +/- 2 microM modulator 1 and 68 +/- 8 microM modulator 2. Modulator inhibited receptor activation with Km's of 3 +/- 1 microM modulator 1 and 33 +/- 10 microM modulator 2. Double-reciprocal analysis showed linear kinetics, and mixing modulator isoforms together had additive effects on unoccupied and occupied receptor steroid binding stabilization and activation inhibition. Colon cytosol contained a low molecular weight, heat-stable factor(s) which inhibited receptor activation and stabilized occupied receptor steroid binding. Molybdate completely stabilized unoccupied mineralocorticoid receptor steroid binding and inhibited activation with half-maximal effects at 3-4 mM but only stabilized occupied receptor binding by approximately 40%. These data indicate that (i) apparent physiologic concentrations of modulator stabilize mineralocorticoid receptor steroid binding and inhibit receptor activation, (ii) an aldosterone-responsive tissue contains a modulator-like activity, and (iii) molybdate mimics the effects of modulator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号