首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. In this assay, the N- and C-terminal fragments of Renilla reniforms luciferase are translationally fused to bait and prey proteins, respectively. When the proteins interact, split luciferase becomes activated and emits luminescence that can be measured by a microplate luminometer. Split luciferase activity was measured by first transforming protoplasts with a DNA vector in a 96-well plate. DNA vector expressing both bait and prey genes was constructed through two independent in vitro DNA recombinant reactions, Gateway and Cre-loxP. As proof of concept, we detected the protein-protein interactions between the nuclear histones 2A and 2B, as well as between membrane proteins SYP (syntaxin of plant) 51 and SYP61, in Arabidopsis protoplasts.  相似文献   

2.
Protein-protein interactions are important layers of regulation in all kingdoms of life. Identification and characterization of these interactions is one challenging task of the post-genomic era and crucial for understanding of molecular processes within a cell. Several methods have been successfully employed during the past decades to identify protein-protein interactions in bacteria, but most of them include tedious and time-consuming manipulations of DNA. In contrast, the MultiSite Gateway system is a fast tool for transfer of multiple DNA fragments between plasmids enabling simultaneous and site directed cloning of up to four fragments into one construct. Here we developed a new set of Gateway vectors including custom made entry vectors and modular Destination vectors for studying protein-protein interactions via Fluorescence Resonance Energy Transfer (FRET), Bacterial two Hybrid (B2H) and split Gaussia luciferase (Gluc), as well as for fusions with SNAP-tag and HaloTag for dual-color super-resolution microscopy. As proof of principle, we characterized the interaction between the Salmonella effector SipA and its chaperone InvB via split Gluc and B2H approach. The suitability for FRET analysis as well as functionality of fusions with SNAP- and HaloTag could be demonstrated by studying the transient interaction between chemotaxis response regulator CheY and its phosphatase CheZ.  相似文献   

3.
4.
Green bioluminescence in Renilla species is generated by a approximately 100% efficient RET (resonance energy transfer) process that is caused by the direct association of a blue-emitting luciferase [Rluc (Renilla luciferase)] and an RGFP (Renilla green fluorescent protein). Despite the high efficiency, such a system has never been evaluated as a potential reporter of protein-protein interactions. To address the question, we compared and analysed in mammalian cells the bioluminescence of Rluc and RGFP co-expressed as free native proteins, or as fused single-chain polypeptides and tethered partners of self-assembling coiled coils. Here, we show that: (i) no spontaneous interactions generating detectable BRET (bioluminescence RET) signals occur between the free native proteins; (ii) high-efficiency BRET similar to that observed in Renilla occurs in both fusion proteins and self-interacting chimaeras, but only if the N-terminal of RGFP is free; (iii) the high-efficiency BRET interaction is associated with a dramatic increase in light output when the luminescent reaction is triggered by low-quantum yield coelenterazine analogues. Here, we propose a new functional complementation assay based on the detection of the high-efficiency BRET signal that is generated when the reporters Rluc and RGFP are brought into close proximity by a pair of interacting proteins to which they are linked. To demonstrate its performance, we implemented the assay to measure the interaction between GPCRs (G-protein-coupled receptors) and beta-arrestins. We show that complementation-induced BRET allows detection of the GPCR-beta-arrestin interaction in a simple luminometric assay with high signal-to-noise ratio, good dynamic range and rapid response.  相似文献   

5.
The Escherichia coli CheZ protein stimulates dephosphorylation of CheY, a response regulator in the chemotaxis signal transduction pathway, by an unknown mechanism. Genetic analysis of CheZ has lagged behind biochemical and biophysical characterization. To identify putative regions of functional importance in CheZ, we subjected cheZ to random mutagenesis and isolated 107 nonchemotactic CheZ mutants. Missense mutations clustered in six regions of cheZ, whereas nonsense and frameshift mutations were scattered reasonably uniformly across the gene. Intragenic complementation experiments showed restoration of swarming activity when compatible plasmids containing genes for the truncated CheZ(1-189) peptide and either CheZA65V, CheZL90S, or CheZD143G were both present, implying the existence of at least two independent functional domains in each chain of the CheZ dimer. Six mutant CheZ proteins, one from each cluster of loss-of-function missense mutations, were purified and characterized biochemically. All of the tested mutant proteins were defective in their ability to dephosphorylate CheY-P, with activities ranging from 0.45 to 16% of that of wild-type CheZ. There was good correlation between the phosphatase activity of CheZ and the ability to form large chemically cross-linked complexes with CheY in the presence of the CheY phosphodonor acetyl phosphate. In consideration of both the genetic and biochemical data, the most severe functional impairments in this set of CheZ mutants seemed to be concentrated in regions which are located in a proposed large N-terminal domain of the CheZ protein.  相似文献   

6.
Dynamic protein-protein interactions are essential in all cellular and developmental processes. Protein-fragment complementation assays allow such protein-protein interactions to be investigated in vivo. In contrast to other protein-fragment complementation assays, the split-luciferase (split-LUC) complementation approach facilitates dynamic and quantitative in vivo analysis of protein interactions, as the restoration of luciferase activity upon protein-protein interaction of investigated proteins is reversible. Here, we describe the development of a floated-leaf luciferase complementation imaging (FLuCI) assay that enables rapid and quantitative in vivo analyses of protein interactions in leaf discs floating on a luciferin infiltration solution after transient expression of split-LUC-labelled interacting proteins in Nicotiana benthamiana. We generated a set of eight Gateway-compatible split-LUC destination vectors, enabling fast, and almost fail-safe cloning of candidate proteins to the LUC termini in all possible constellations. We demonstrate their functionality by visualizing the well-established homodimerization of the 14-3-3 regulator proteins. Quantitative interaction analyses of the molybdenum co-factor biosynthesis proteins CNX6 and CNX7 show that the luciferase-based protein-fragment complementation assay allows direct real-time monitoring of absolute values of protein complex assembly. Furthermore, the split-LUC assay is established as valuable tool to investigate the dynamics of protein interactions by monitoring the disassembly of actin filaments in planta. The new Gateway-compatible split-LUC destination vector system, in combination with the FLuCI assay, provides a useful means to facilitate quantitative analyses of interactions between large numbers of proteins constituting interaction networks in plant cells.  相似文献   

7.
Intermolecular enzyme complementation assay is a useful method for detecting protein-protein interactions. Specifically, bioluminescent signals produced from reconstructed split luciferase fragments are powerful tools for in vivo analysis because the bioluminescent signals have been visualized both in cultured cells and living animals. However, they are limited for detection and evaluation of biological events relevant to intermolecular protein-protein interactions. In this study, we constructed an intramolecular luciferase complementation probe for detecting target biomolecules other than protein-protein interactions. It consists of peptide-inserted firefly luciferase (PI-FLuc) containing a short peptide between internally divided firefly luciferase. The inserted short peptide triggers FLuc complementation or discomplementation and subsequent reactivation or inactivation of FLuc activity through its induced fit conformational changes. We chose RNA binding arginine rich motif (ARM) peptides, Rev and/or Tat, for model peptide insertion, and expressed constructed PI-FLuc probe variants using a wheat germ cell-free protein synthesis system. They showed FLuc activity changes, reactivation, or inactivation after binding to their specific RNA targets. Furthermore, to expand the versatility of the PI-FLuc RNA detection system, we designed split-RNA probes built to reform the ARM peptide binding site in the presence of arbitrarily selected target-RNA. As a result, the target RNA was homogeneously detected by FLuc luminescent signals mediated by a cooperative function of the PI-FLuc and split-RNA probe sets.  相似文献   

8.
The signal transduction system that mediates bacterial chemotaxis allows cells to moduate their swimming behavior in response to fluctuations in chemical stimuli. Receptors at the cell surface receive information from the surroundings. Signals are then passed from the receptors to cytoplasmic chemotaxis components: CheA, CheW, CheZ, CheR, and CheB. These proteins function to regulate the level of phosphorylation of a response regulator designated CheY that interacts with the flagellar motor switch complex to control swimming behavior. The structure of CheY has been determined. Magnesium ion is essential for activity. The active site contains highly conserved Asp residues that are required for divalent metal ion binding and CheY phosphorylation. Another residue-at the active site, Lys109, is important in the phosphorylation-induced conformational change that facilitates communication with the switch complex and another chemotaxis component, CheZ. CheZ facilitates the dephosphorylation of phospho-CheY. Defects in CheY and CheZ can be suppressed by mutations in the flagellar switch complex. CheZ is thought to modulate the switch bias by varying the level of phospho-CheY. © 1993 Wiley-Liss, Inc.  相似文献   

9.
CheY, a response regulator of the chemotaxis system in Escherichia coli, can be activated by either phosphorylation or acetylation to generate clockwise rotation of the flagellar motor. Both covalent modifications are involved in chemotaxis, but the function of the latter remains obscure. To understand why two different modifications apparently activate the same function of CheY, we studied the effect that each modification exerts on the other. The phosphodonors of CheY, the histidine kinase CheA and acetyl phosphate, each strongly inhibited both the autoacetylation of the acetylating enzyme, acetyl-CoA synthetase (Acs), and the acetylation of CheY. CheZ, the enzyme that enhances CheY dephosphorylation, had the opposite effect and enhanced Acs autoacetylation and CheY acetylation. These effects of the phosphodonors and CheZ were not caused by their respective activities. Rather, they were caused by their interactions with Acs and, possibly, with CheY. In addition, the presence of Acs elevated the phosphorylation levels of both CheA and CheY, and acetate repressed this stimulation. These observations suggest that CheY phosphorylation and acetylation are linked and co-regulated. We propose that the physiological role of these mutual effects is at two levels: linking chemotaxis to the metabolic state of the cell, and serving as a tuning mechanism that compensates for cell-to-cell variations in the concentrations of CheA and CheZ.  相似文献   

10.
The bimolecular fluorescence complementation (BiFC) assay is a method for visualizing protein-protein interactions in living cells. To visualize the cofilin-actin interaction in living cells, a series of combinations of the N- and C-terminal fragments of Venus fused upstream or downstream of cofilin and actin were screened systematically. A new pair of split Venus fragments, Venus (1-210) fused upstream of cofilin and Venus (210-238) fused downstream of actin, was the most effective combination for visualizing the specific interaction between cofilin and actin in living cells. This pair of Venus fragments was also effective for detecting the active Ras-dependent interaction between H-Ras and Raf1 and the Ca(2+)-dependent interaction between calmodulin and its target M13 peptide. In vitro BiFC assays using the pair of purified BiFC probes provided the means to detect the specific interactions between cofilin and actin and between H-Ras and Raf1. In vivo and in vitro BiFC assays using the newly identified pair of Venus fragments will serve as a useful tool for measuring protein-protein interactions with high specificity and low background fluorescence and could be applied to the screening of inhibitors that block protein-protein interactions.  相似文献   

11.
Stewart RC  VanBruggen R 《Biochemistry》2004,43(27):8766-8777
In the chemotaxis signal transduction pathway of Escherichia coli, the response regulator protein CheY is phosphorylated by the receptor-coupled protein kinase CheA. Previous studies of CheY phosphorylation and CheY interactions with other proteins in the chemotaxis pathway have exploited the fluorescence properties of Trp(58), located immediately adjacent to the phosphorylation site of CheY (Asp(57)). Such studies can be complicated by the intrinsic fluorescence and absorbance properties of CheA and other proteins of interest. To circumvent these difficulties, we generated a derivative of CheY carrying a covalently attached fluorescent label that serves as a sensitive reporter of phosphorylation and binding events and that absorbs and emits light at wavelengths well removed from potential interference by other proteins. This labeled version of CheY has the (dimethylamino)naphthalene fluorophore from Badan [6-bromoacetyl-2-(dimethylamino)naphthalene] attached to the thiol group of a cysteine introduced at position 17 of CheY by site-directed mutagenesis. Under phosphorylating conditions (or in the presence of beryllofluoride), the fluorescence emission of Badan-labeled CheY(M17C) exhibited an approximately 10 nm blue shift and an approximately 30% increase in signal intensity at 490 nm. The fluorescence of Badan-labeled CheY(M17C) also served as a sensitive reporter of CheY-CheA binding interactions, exhibiting an approximately 50% increase in emission intensity in the presence of saturating levels of CheA. Compared to wild-type CheY, Badan-labeled CheY exhibited reduced ability to autodephosphorylate and could not interact productively with the phosphatase CheZ. However, with respect to autophosphorylation and interactions with CheA, Badan-CheY performed identically to wild-type CheY, allowing us to explore CheA-CheY phosphotransfer kinetics and binding kinetics without interference from the fluorescence/absorbance properties of CheA and ATP. These results provide insights into CheY interactions with CheA, CheZ, and other components of the chemotaxis signaling pathway.  相似文献   

12.
CheY is a response regulator in the well studied two-component system that mediates bacterial chemotaxis. Phosphorylation of CheY at Asp(57) enhances its interaction with the flagellar motor. Asn(59) is located near the phosphorylation site, and possible roles this residue may play in CheY function were explored by mutagenesis. Cells containing CheY59NR or CheY59NH exhibited hyperactive phenotypes (clockwise flagellar rotation), and CheY59NR was characterized biochemically. A continuous enzyme-linked spectroscopic assay that monitors P(i) concentration was the primary method for kinetic analysis of phosphorylation and dephosphorylation. CheY59NR autodephosphorylated at the same rate as wild-type CheY and phosphorylated similarly to wild type with acetyl phosphate and faster (4-14x) with phosphoramidate and monophosphoimidazole. CheY59NR was extremely resistant to CheZ, requiring at least 250 times more CheZ than wild-type CheY to achieve the same dephosphorylation rate enhancement, whereas CheY59NA was CheZ-sensitive. However, several independent approaches demonstrated that CheY59NR bound tightly to CheZ. A submicromolar K(d) for CheZ binding to CheY59NR-P or CheY.BeF(3)(-) was inferred from fluorescence anisotropy measurements of fluoresceinated-CheZ. A complex between CheY59NR-P and CheZ was isolated by analytical gel filtration, and the elution position from the column was indistinguishable from that of the CheZ dimer. Therefore, we were not able to detect large CheY-P.CheZ complexes that have been inferred using other methods. Possible structural explanations for the specific inhibition of CheZ activity as a result of the arginyl substitution at CheY position 59 are discussed.  相似文献   

13.
Chemotaxis, a means for motile bacteria to sense the environment and achieve directed swimming, is controlled by flagellar rotation. The primary output of the chemotaxis machinery is the phosphorylated form of the response regulator CheY (P~CheY). The steady-state level of P~CheY dictates the direction of rotation of the flagellar motor. The chemotaxis signal in the form of P~CheY is terminated by the phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two distinct protein-protein interfaces: one involving the strongly conserved C-terminal helix of CheZ (CheZC) tethering the two proteins together and the other constituting an active site for catalytic dephosphorylation. In a previous work (J. Guhaniyogi, V. L. Robinson, and A. M. Stock, J. Mol. Biol. 359:624-645, 2006), we presented high-resolution crystal structures of CheY in complex with the CheZC peptide that revealed alternate binding modes subject to the conformational state of CheY. In this study, we report biochemical and structural data that support the alternate-binding-mode hypothesis and identify key recognition elements in the CheY-CheZC interaction. In addition, we present kinetic studies of the CheZC-associated effect on CheY phosphorylation with its physiologically relevant phosphodonor, the histidine kinase CheA. Our results indicate mechanistic differences in phosphotransfer from the kinase CheA versus that from small-molecule phosphodonors, explaining a modest twofold increase of CheY phosphorylation with the former, observed in this study, relative to a 10-fold increase previously documented with the latter.  相似文献   

14.
Bacterial chemotaxis results from the ability of flagellated bacteria to control the frequency of switching between smooth-swimming and tumbling episodes in response to changes in concentration of extracellular substances. High levels of phosphorylated CheY protein are the intracellular signal for inducing the tumbling mode of swimming. The CheZ protein has been shown to control the level of phosphorylated CheY by regulating its rate of dephosphorylation. To identify functional domains in the CheZ protein, we made mutants by random mutagenesis of the cheZ gene and constructed a series of deletions. The map position and the in vivo and in vitro activity of the resulting gain- or loss-of-function mutant proteins define separate functional domains of the CheZ protein.  相似文献   

15.
CheY, a small cytoplasmic response regulator, plays an essential role in the chemotaxis pathway. The concentration of phospho-CheY is thought to determine the swimming behaviour of the cell: high levels of phospho-CheY cause bacteria to rotate their flagella clockwise and tumble, whereas low levels of the phos-phorylated form of the protein allow counter-ciockwise rotation of the flagella and smooth swimming. The phosphorylation state of CheY in vivo is determined by the activity of the phosphoryl donor CheA, and by the antagonistic effect of dephosphorylation of phospho-CheY. The dephosphorylation rate is controlled by the intrinsic autohydrolytic activity of phospho-CheY and by the CheZ protein, which accelerates dephosphorylation. We have analysed the effect of CheZ on the dephosphorylation rates of several mutant CheY proteins. Two point mutations were identified which were 50-fold and 5-fold less sensitive to the activity of CheZ than was the wild-type protein. Nonetheless, the phosphorylation and autodephos-phorylation rates of these mutants, CheY23ND and CheY26KE, were observed to be identical to those of wild-type CheY in the absence of CheZ. These are the first examples of CheY mutations that reduce sensitivity to the phosphatase activity of CheZ without being altered in terms of their intrinsic phosphorylation and autodephospborylation rates, interestingly, the residues Asn-23 and Lys-26 are located on a face of CheY far from the phosphorylation site (Asp-57), distinct from the previously described site of inter-action with the histidine kinase CheA, and partially overlapping with a region implicated in interaction with the flagellar switch.  相似文献   

16.
We prepared fusions of yellow fluorescent protein [the YFP variant of green fluorescent protein (GFP)] with the cytoplasmic chemotaxis proteins CheY, CheZ and CheA and the flagellar motor protein FliM, and studied their localization in wild-type and mutant cells of Escherichia coli. All but the CheA fusions were functional. The cytoplasmic proteins CheY, CheZ and CheA tended to cluster at the cell poles in a manner similar to that observed earlier for methyl-accepting chemotaxis proteins (MCPs), but only if MCPs were present. Co-localization of CheY and CheZ with MCPs was CheA dependent, and co-localization of CheA with MCPs was CheW dependent, as expected. Co-localization with MCPs was confirmed by immunofluorescence using an anti-MCP primary antibody. The motor protein FliM appeared as discrete spots on the sides of the cell. These were seen in wild-type cells and in a fliN mutant, but not in flhC or fliG mutants. Co-localization with flagellar structures was confirmed by immunofluorescence using an antihook primary antibody. Surprisingly, we did not observe co-localization of CheY with motors, even under conditions in which cells tumbled.  相似文献   

17.
The protein CheZ, which has the last unknown structure in the Escherichia coli chemotaxis pathway, stimulates the dephosphorylation of the response regulator CheY by an unknown mechanism. Here we report the co-crystal structure of CheZ with CheY, Mg(2+) and the phosphoryl analog, BeF(3)(-). The predominant structural feature of the CheZ dimer is a long four-helix bundle composed of two helices from each monomer. The side chain of Gln 147 of CheZ inserts into the CheY active site and is essential to the dephosphorylation activity of CheZ. Gln 147 may orient a water molecule for nucleophilic attack, similar to the role of the conserved Gln residue in the RAS family of GTPases. Similarities between the CheY[bond] CheZ and Spo0F [bond]Spo0B structures suggest a general mode of interaction for modulation of response regulator phosphorylation chemistry.  相似文献   

18.
Molecular mechanisms that govern chemotaxis and motility in the nitrogen-fixing soil bacterium, Sinorhizobium meliloti, are distinguished from the well-studied taxis systems of enterobacteria by new features. (i) In addition to six transmembrane chemotaxis receptors, S. meliloti has two cytoplasmic receptor proteins, McpY (methyl-accepting chemotaxis protein) and IcpA (internal chemotaxis protein). (ii) The tactic response is mediated by two response regulators, CheY1 and CheY2, but no phosphatase, CheZ. Phosphorylated CheY2 (CheY2-P) is the main regulator of motor function, whereas CheY1 assumes the role of a 'sink' for phosphate that is shuttled from CheY2-P back to CheA. This phospho-transfer from surplus CheY2-P to CheA to CheY1 replaces CheZ phosphatase. (iii) S. meliloti flagella have a complex structure with three helical ribbons that render the filaments rigid and unable to undergo polymorphic transitions from right- to left-handedness. Flagella rotate only clockwise and their motors can increase and decrease rotary speed. Hence, directional changes of a swimming cell occur during slow-down, when several flagella rotate at different speed. Two novel motility proteins, the periplasmic MotC and the cytoplasmic MotD, are essential for motility and rotary speed variation. A model consistent with these data postulates a MotC-mediated gating of the energizing MotA-MotB proton channels leading to variations in flagellar rotary speed.  相似文献   

19.
To understand output control in bacterial chemotaxis, we varied the levels of expression of cellular cheY and cheZ genes and found that the overproduction of the corresponding proteins affected Escherichia coli swimming behavior. In the absence of other signal-transducing gene products, CheY overproduction made free-swimming cells tumble more frequently. A plot of the fraction of the population that are tumbling versus the CheY concentration was hyperbolic, with half of the population tumbling at 30 microM (25,000 copies per cell) CheY monomers in the cytosol. Overproduction of aspartate receptor (Tar) by 30-fold had a negligible effect on CheY-induced tumbling, so Tar does not sequester CheY. CheZ overproduction decreased tumbling in all tumbling mutants except certain flaAII(cheC) mutants. In the absence of other chemotaxis gene products, CheZ overproduction inhibited CheY-induced tumbling. Models for CheY as a tumbling signal and CheZ as a smooth-swimming signal to control flagellar rotation are discussed.  相似文献   

20.
The Escherichia coli chemotaxis signal transduction pathway has: CheA, a histidine protein kinase; CheW, a linker between CheA and sensory proteins; CheY, the effector; and CheZ, a signal terminator. Rhodobacter sphaeroides has multiple copies of these proteins (2 x CheA, 3 x CheW and 3 x CheY, but no CheZ). In this study, we found a fourth cheY and expressed these R. sphaeroides proteins in E. coli. CheA2 (but not CheA1) restored swarming to an E. coli cheA mutant (RP9535). CheW3 (but not CheW2) restored swarming to a cheW mutant of E. coli (RP4606). R. sphaeroides CheYs did not affect E. coli lacking CheY, but restored swarming to a cheZ strain (RP1616), indicating that they can act as signal terminators in E. coli. An E. coli CheY, which is phosphorylated but cannot bind the motor (CheY109KR), was expressed in RP1616 but had no effect. Overexpression of CheA2, CheW2, CheW3, CheY1, CheY3 and CheY4 inhibited chemotaxis of wild-type E. coli (RP437) by increasing its smooth-swimming bias. While some R. sphaeroides proteins restore tumbling to smooth-swimming E. coli mutants, their activity is not controlled by the chemosensory receptors. R. sphaeroides possesses a phosphorelay cascade compatible with that of E. coli, but has additional incompatible homologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号