首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Microarray techniques provide new insights into molecular classification of cancer types, which is critical for cancer treatments and diagnosis. Recently, an increasing number of supervised machine learning methods have been applied to cancer classification problems using gene expression data. Support vector machines (SVMs), in particular, have become one of the most effective and leading methods. However, there exist few studies on the application of other kernel methods in the literature. We apply a kernel subspace (KS) method to multiclass cancer classification problems, and assess its validity by comparing it with multiclass SVMs. Our comparative study using seven multiclass cancer datasets demonstrates that the KS method has high performance that is comparable to multiclass SVMs. Furthermore, we propose an effective criterion for kernel parameter selection, which is shown to be useful for the computation of the KS method.  相似文献   

2.
MOTIVATION: Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve binary gene selection problems. Several groups have extended SVM-RFE to solve multiclass problems using one-versus-all techniques. However, the genes selected from one binary gene selection problem may reduce the classification performance in other binary problems. RESULTS: In the present study, we propose a family of four extensions to SVM-RFE (called MSVM-RFE) to solve the multiclass gene selection problem, based on different frameworks of multiclass SVMs. By simultaneously considering all classes during the gene selection stages, our proposed extensions identify genes leading to more accurate classification.  相似文献   

3.
BACKGROUND: We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes). RESULTS: Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information--to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described.  相似文献   

4.
Peng S  Xu Q  Ling XB  Peng X  Du W  Chen L 《FEBS letters》2003,555(2):358-362
Simultaneous multiclass classification of tumor types is essential for future clinical implementations of microarray-based cancer diagnosis. In this study, we have combined genetic algorithms (GAs) and all paired support vector machines (SVMs) for multiclass cancer identification. The predictive features have been selected through iterative SVMs/GAs, and recursive feature elimination post-processing steps, leading to a very compact cancer-related predictive gene set. Leave-one-out cross-validations yielded accuracies of 87.93% for the eight-class and 85.19% for the fourteen-class cancer classifications, outperforming the results derived from previously published methods.  相似文献   

5.
This paper studies the problem of building multiclass classifiers for tissue classification based on gene expression. The recent development of microarray technologies has enabled biologists to quantify gene expression of tens of thousands of genes in a single experiment. Biologists have begun collecting gene expression for a large number of samples. One of the urgent issues in the use of microarray data is to develop methods for characterizing samples based on their gene expression. The most basic step in the research direction is binary sample classification, which has been studied extensively over the past few years. This paper investigates the next step-multiclass classification of samples based on gene expression. The characteristics of expression data (e.g. large number of genes with small sample size) makes the classification problem more challenging. The process of building multiclass classifiers is divided into two components: (i) selection of the features (i.e. genes) to be used for training and testing and (ii) selection of the classification method. This paper compares various feature selection methods as well as various state-of-the-art classification methods on various multiclass gene expression datasets. Our study indicates that multiclass classification problem is much more difficult than the binary one for the gene expression datasets. The difficulty lies in the fact that the data are of high dimensionality and that the sample size is small. The classification accuracy appears to degrade very rapidly as the number of classes increases. In particular, the accuracy was very low regardless of the choices of the methods for large-class datasets (e.g. NCI60 and GCM). While increasing the number of samples is a plausible solution to the problem of accuracy degradation, it is important to develop algorithms that are able to analyze effectively multiple-class expression data for these special datasets.  相似文献   

6.
Phenotypic Up-regulated Gene Support Vector Machine (PUGSVM) is a cancer Biomedical Informatics Grid (caBIG?) analytical tool for multiclass gene selection and classification. PUGSVM addresses the problem of imbalanced class separability, small sample size and high gene space dimensionality, where multiclass gene markers are defined by the union of one-versus-everyone phenotypic upregulated genes, and used by a well-matched one-versus-rest support vector machine. PUGSVM provides a simple yet more accurate strategy to identify statistically reproducible mechanistic marker genes for characterization of heterogeneous diseases. AVAILABILITY: http://www.cbil.ece.vt.edu/caBIG-PUGSVM.htm.  相似文献   

7.
Gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. Gene selection, as an important step for improved diagnostics, screens tens of thousands of genes and identifies a small subset that discriminates between disease types. A two-step gene selection method is proposed to identify informative gene subsets for accurate classification of multiclass phenotypes. In the first step, individually discriminatory genes (IDGs) are identified by using one-dimensional weighted Fisher criterion (wFC). In the second step, jointly discriminatory genes (JDGs) are selected by sequential search methods, based on their joint class separability measured by multidimensional weighted Fisher criterion (wFC). The performance of the selected gene subsets for multiclass prediction is evaluated by artificial neural networks (ANNs) and/or support vector machines (SVMs). By applying the proposed IDG/JDG approach to two microarray studies, that is, small round blue cell tumors (SRBCTs) and muscular dystrophies (MDs), we successfully identified a much smaller yet efficient set of JDGs for diagnosing SRBCTs and MDs with high prediction accuracies (96.9% for SRBCTs and 92.3% for MDs, resp.). These experimental results demonstrated that the two-step gene selection method is able to identify a subset of highly discriminative genes for improved multiclass prediction.  相似文献   

8.
Microarray technology is becoming a powerful tool for clinical diagnosis, as it has potential to discover gene expression patterns that are characteristic for a particular disease. To date, this possibility has received much attention in the context of cancer research, especially in tumor classification. However, most published articles have concentrated on the development of binary classification methods while neglected ubiquitous multiclass problems. Unfortunately, only a few multiclass classification approaches have had poor predictive accuracy. In an effort to improve classification accuracy, we developed a novel multiclass microarray data classification method. First, we applied a "one versus rest-support vector machine" to classify the samples. Then the classification confidence of each testing sample was evaluated according to its distribution in feature space and some with poor confidence were extracted. Next, a novel strategy, which we named as "class priority estimation method based on centroid distance", was used to make decisions about categories for those poor confidence samples. This approach was tested on seven benchmark multiclass microarray datasets, with encouraging results, demonstrating effectiveness and feasibility.  相似文献   

9.
We investigate the multiclass classification of cancer microarray samples. In contrast to classification of two cancer types from gene expression data, multiclass classification of more than two cancer types are relatively hard and less studied problem. We used class-wise optimized genes with corresponding one-versus-all support vector machine (OVA-SVM) classifier to maximize the utilization of selected genes. Final prediction was made by using probability scores from all classifiers. We used three different methods of estimating probability from decision value. Among the three probability methods, Platt's approach was more consistent, whereas, isotonic approach performed better for datasets with unequal proportion of samples in different classes. Probability based decision does not only gives true and fair comparison between different one-versus-all (OVA) classifiers but also gives the possibility of using them for any post analysis. Several ensemble experiments, an example of post analysis, of the three probability methods were implemented to study their effect in improving the classification accuracy. We observe that ensemble did help in improving the predictive accuracy of cancer data sets especially involving unbalanced samples. Four-fold external stratified cross-validation experiment was performed on the six multiclass cancer datasets to obtain unbiased estimates of prediction accuracies. Analysis of class-wise frequently selected genes on two cancer datasets demonstrated that the approach was able to select important and relevant genes consistent to literature. This study demonstrates successful implementation of the framework of class-wise feature selection and multiclass classification for prediction of cancer subtypes on six datasets.  相似文献   

10.
Multivariate time-series (MTS) data are prevalent in diverse domains and often high dimensional. We propose new random projection ensemble classifiers with high-dimensional MTS. The method first applies dimension reduction in the time domain via randomly projecting the time-series variables into some low-dimensional space, followed by measuring the disparity via some novel base classifier between the data and the candidate generating processes in the projected space. Our contributions are twofold: (i) We derive optimal weighted majority voting schemes for pooling information from the base classifiers for multiclass classification and (ii) we introduce new base frequency-domain classifiers based on Whittle likelihood (WL), Kullback-Leibler (KL) divergence, eigen-distance (ED), and Chernoff (CH) divergence. Both simulations for binary and multiclass problems, and an Electroencephalogram (EEG) application demonstrate the efficacy of the proposed methods in constructing accurate classifiers with high-dimensional MTS.  相似文献   

11.
MOTIVATION: The development of microarray-based high-throughput gene profiling has led to the hope that this technology could provide an efficient and accurate means of diagnosing and classifying tumors, as well as predicting prognoses and effective treatments. However, the large amount of data generated by microarrays requires effective reduction of discriminant gene features into reliable sets of tumor biomarkers for such multiclass tumor discrimination. The availability of reliable sets of biomarkers, especially serum biomarkers, should have a major impact on our understanding and treatment of cancer. RESULTS: We have combined genetic algorithm (GA) and all paired (AP) support vector machine (SVM) methods for multiclass cancer categorization. Predictive features can be automatically determined through iterative GA/SVM, leading to very compact sets of non-redundant cancer-relevant genes with the best classification performance reported to date. Interestingly, these different classifier sets harbor only modest overlapping gene features but have similar levels of accuracy in leave-one-out cross-validations (LOOCV). Further characterization of these optimal tumor discriminant features, including the use of nearest shrunken centroids (NSC), analysis of annotations and literature text mining, reveals previously unappreciated tumor subclasses and a series of genes that could be used as cancer biomarkers. With this approach, we believe that microarray-based multiclass molecular analysis can be an effective tool for cancer biomarker discovery and subsequent molecular cancer diagnosis.  相似文献   

12.

Background  

Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems.  相似文献   

13.
Multiclass classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. There have been many studies of aggregating binary classifiers to construct a multiclass classifier based on one-versus-the-rest (1R), one-versus-one (11), or other coding strategies, as well as some comparison studies between them. However, the studies found that the best coding depends on each situation. Therefore, a new problem, which we call the ldquooptimal coding problem,rdquo has arisen: how can we determine which coding is the optimal one in each situation? To approach this optimal coding problem, we propose a novel framework for constructing a multiclass classifier, in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. Although there is no a priori answer to the optimal coding problem, our weight tuning method can be a consistent answer to the problem. We apply this method to various classification problems including a synthesized data set and some cancer diagnosis data sets from gene expression profiling. The results demonstrate that, in most situations, our method can improve classification accuracy over simple voting heuristics and is better than or comparable to state-of-the-art multiclass predictors.  相似文献   

14.

Background  

Various statistical and machine learning methods have been successfully applied to the classification of DNA microarray data. Simple instance-based classifiers such as nearest neighbor (NN) approaches perform remarkably well in comparison to more complex models, and are currently experiencing a renaissance in the analysis of data sets from biology and biotechnology. While binary classification of microarray data has been extensively investigated, studies involving multiclass data are rare. The question remains open whether there exists a significant difference in performance between NN approaches and more complex multiclass methods. Comparative studies in this field commonly assess different models based on their classification accuracy only; however, this approach lacks the rigor needed to draw reliable conclusions and is inadequate for testing the null hypothesis of equal performance. Comparing novel classification models to existing approaches requires focusing on the significance of differences in performance.  相似文献   

15.
Hong H  Tong W  Perkins R  Fang H  Xie Q  Shi L 《DNA and cell biology》2004,23(10):685-694
The wealth of knowledge imbedded in gene expression data from DNA microarrays portends rapid advances in both research and clinic. Turning the prodigious and noisy data into knowledge is a challenge to the field of bioinformatics, and development of classifiers using supervised learning techniques is the primary methodological approach for clinical application using gene expression data. In this paper, we present a novel classification method, multiclass Decision Forest (DF), that is the direct extension of the two-class DF previously developed in our lab. Central to DF is the synergistic combining of multiple heterogenic but comparable decision trees to reach a more accurate and robust classification model. The computationally inexpensive multiclass DF algorithm integrates gene selection and model development, and thus eliminates the bias of gene preselection in crossvalidation. Importantly, the method provides several statistical means for assessment of prediction accuracy, prediction confidence, and diagnostic capability. We demonstrate the method by application to gene expression data for 83 small round blue-cell tumors (SRBCTs) samples belonging to one of four different classes. Based on 500 runs of 10-fold crossvalidation, tumor prediction accuracy was approximately 97%, sensitivity was approximately 95%, diagnostic sensitivity was approximately 91%, and diagnostic accuracy was approximately 99.5%. Among 25 genes selected to distinguish tumor class, 12 have functional information in the literature implicating their involvement in cancer. The four types of SRBCTs samples are also distinguishable in a clustering analysis based on the expression profiles of these 25 genes. The results demonstrated that the multiclass DF is an effective classification method for analysis of gene expression data for the purpose of molecular diagnostics.  相似文献   

16.

Introduction

Tumor-derived proteins and naturally occurring peptides represent a rich source of potential cancer markers for multiclass cancer distinction.

Materials and Methods

In this study, proteomes/peptidomes derived from primary colon cancer, kidney cancer, liver cancer, and glioblastoma were analyzed by liquid chromatography coupled with mass spectrometry to identify multiclass cancer discriminative protein and peptide candidates. Spectral counting and peptidomic analyses found two biomarker panels, one with 12 proteins and the other with 53 peptides, both capable of multiclass cancer detection and classification.

Results and Discussion

Shed from tumor tissues through apoptosis/necrosis, cell secretion, or tumor-specific degradation of extracellular matrix proteins, these proteins/peptides are likely to enter into circulation and, therefore, have the potential to be configured into practical serological diagnostic and prognostic utilities.  相似文献   

17.
MOTIVATION: Microarray expression profiling appears particularly promising for a deeper understanding of cancer biology and to identify molecular signatures supporting the histological classification schemes of neoplastic specimens. However, molecular diagnostics based on microarray data presents major challenges due to the overwhelming number of variables and the complex, multiclass nature of tumor samples. Thus, the development of marker selection methods, that allow the identification of those genes that are most likely to confer high classification accuracy of multiple tumor types, and of multiclass classification schemes is of paramount importance. RESULTS: A computational procedure for marker identification and for classification of multiclass gene expression data through the application of disjoint principal component models is described. The identified features represent a rational and dimensionally reduced base for understanding the basic biology of diseases, defining targets for therapeutic intervention, and developing diagnostic tools for the identification and classification of multiple pathological states. The method has been tested on different microarray data sets obtained from various human tumor samples. The results demonstrate that this procedure allows the identification of specific phenotype markers and can classify previously unseen instances in the presence of multiple classes.  相似文献   

18.
Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein-protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs.  相似文献   

19.
It is crucial for cancer diagnosis and treatment to accurately identify the site of origin of a tumor. With the emergence and rapid advancement of DNA microarray technologies, constructing gene expression profiles for different cancer types has already become a promising means for cancer classification. In addition to research on binary classification such as normal versus tumor samples, which attracts numerous efforts from a variety of disciplines, the discrimination of multiple tumor types is also important. Meanwhile, the selection of genes which are relevant to a certain cancer type not only improves the performance of the classifiers, but also provides molecular insights for treatment and drug development. Here, we use semisupervised ellipsoid ARTMAP (ssEAM) for multiclass cancer discrimination and particle swarm optimization for informative gene selection. ssEAM is a neural network architecture rooted in adaptive resonance theory and suitable for classification tasks. ssEAM features fast, stable, and finite learning and creates hyperellipsoidal clusters, inducing complex nonlinear decision boundaries. PSO is an evolutionary algorithm-based technique for global optimization. A discrete binary version of PSO is employed to indicate whether genes are chosen or not. The effectiveness of ssEAM/PSO for multiclass cancer diagnosis is demonstrated by testing it on three publicly available multiple-class cancer data sets. ssEAM/PSO achieves competitive performance on all these data sets, with results comparable to or better than those obtained by other classifiers  相似文献   

20.

Background

The Signal-to-Noise-Ratio (SNR) is often used for identification of biomarkers for two-class problems and no formal and useful generalization of SNR is available for multiclass problems. We propose innovative generalizations of SNR for multiclass cancer discrimination through introduction of two indices, Gene Dominant Index and Gene Dormant Index (GDIs). These two indices lead to the concepts of dominant and dormant genes with biological significance. We use these indices to develop methodologies for discovery of dominant and dormant biomarkers with interesting biological significance. The dominancy and dormancy of the identified biomarkers and their excellent discriminating power are also demonstrated pictorially using the scatterplot of individual gene and 2-D Sammon's projection of the selected set of genes. Using information from the literature we have shown that the GDI based method can identify dominant and dormant genes that play significant roles in cancer biology. These biomarkers are also used to design diagnostic prediction systems.

Results and discussion

To evaluate the effectiveness of the GDIs, we have used four multiclass cancer data sets (Small Round Blue Cell Tumors, Leukemia, Central Nervous System Tumors, and Lung Cancer). For each data set we demonstrate that the new indices can find biologically meaningful genes that can act as biomarkers. We then use six machine learning tools, Nearest Neighbor Classifier (NNC), Nearest Mean Classifier (NMC), Support Vector Machine (SVM) classifier with linear kernel, and SVM classifier with Gaussian kernel, where both SVMs are used in conjunction with one-vs-all (OVA) and one-vs-one (OVO) strategies. We found GDIs to be very effective in identifying biomarkers with strong class specific signatures. With all six tools and for all data sets we could achieve better or comparable prediction accuracies usually with fewer marker genes than results reported in the literature using the same computational protocols. The dominant genes are usually easy to find while good dormant genes may not always be available as dormant genes require stronger constraints to be satisfied; but when they are available, they can be used for authentication of diagnosis.

Conclusion

Since GDI based schemes can find a small set of dominant/dormant biomarkers that is adequate to design diagnostic prediction systems, it opens up the possibility of using real-time qPCR assays or antibody based methods such as ELISA for an easy and low cost diagnosis of diseases. The dominant and dormant genes found by GDIs can be used in different ways to design more reliable diagnostic prediction systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号