首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
4'-Phosphopantetheine transferases (PPTases) transfer the 4'-phosphopantetheine moiety of coenzyme A onto a conserved serine residue of acyl carrier proteins (ACPs) of fatty acid and polyketide synthases as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases. This posttranslational modification converts ACPs and PCPs from their inactive apo into the active holo form. We have investigated the 4'-phosphopantetheinylation reaction in Bacillus subtilis, an organism containing in total 43 ACPs and PCPs but only two PPTases, the acyl carrier protein synthase AcpS of primary metabolism and Sfp, a PPTase of secondary metabolism associated with the nonribosomal peptide synthetase for the peptide antibiotic surfactin. We identified and cloned ydcB encoding AcpS from B. subtilis, which complemented an Escherichia coli acps disruption mutant. B. subtilis AcpS and its substrate ACP were biochemically characterized. AcpS also modified the d-alanyl carrier protein but failed to recognize PCP and an acyl carrier protein of secondary metabolism discovered in this study, designated AcpK, that was not identified by the Bacillus genome project. On the other hand, Sfp was able to modify in vitro all acyl carrier proteins tested. We thereby extend the reported broad specificity of this enzyme to the homologous ACP. This in vitro cross-interaction between primary and secondary metabolism was confirmed under physiological in vivo conditions by the construction of a ydcB deletion in a B. subtilis sfp(+) strain. The genes coding for Sfp and its homolog Gsp from Bacillus brevis could also complement the E. coli acps disruption. These results call into question the essential role of AcpS in strains that contain a Sfp-like PPTase and consequently the suitability of AcpS as a microbial target in such strains.  相似文献   

2.
The Sec machinery (or translocase) provides a major pathway of protein translocation from the cytosol across the cytoplasmic membrane in bacteria. The SecA ATPase interacts dynamically with the SecYEG integral membrane components to drive the transmembrane movement of newly synthesized preproteins. This pathway is also used for integration of some membrane proteins and the Sec translocase interacts with other cellular components to achieve its cellular roles. The detailed protein interactions involved in these processes are being actively studied and a structural understanding of the protein-conducting channel has started to emerge.  相似文献   

3.
The cell envelope of Mycobacterium tuberculosis (M. tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP(87), but not EcBCCP(87). This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the self-biotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over self-biotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-5' AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis.  相似文献   

4.
J Toyn  A R Hibbs  P Sanz  J Crowe    D I Meyer 《The EMBO journal》1988,7(13):4347-4353
Mutants defective in the ability to translocate proteins across the membrane of the endoplasmic reticulum were selected in Trp- Saccharomyces cerevisiae on the basis of their ability to retain a fusion protein in the cytosol. The fusion comprised the prepro region of prepro-alpha-factor (MF alpha 1) N-terminal to phosphoribosyl anthranilate isomerase (TRP1). The first of the protein translocation mutations, called ptl1, results in temperature-sensitivity of growth and protein translocation. At the non-permissive temperature, precursors to several secretory proteins accumulate in the cytosol. Using this mutant, we demonstrate that the prepro-carboxypeptidase Y that had been accumulated in the cytosol at the non-permissive temperature could be post-translationally translocated into the endoplasmic reticulum when cells were returned to the permissive temperature. This result indicates that post-translational translocation of preproteins across endoplasmic reticulum membranes can occur in vivo. We have also determined that the temperature-sensitive component is membrane-associated in ptl1, and that the membranes derived from this strain show a reversible temperature-sensitive translocation phenotype in vitro.  相似文献   

5.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

6.
SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex.  相似文献   

7.
Spinach ACP isoform I was overexpressed in Escherichia coli BL21(DE3) using a gene synthesized from codons associated with high-level expression in E. coli. The synthetic gene has extensive changes in codon usage (23 of 77 total codons) relative to that of the originally synthesized plant gene (P. D. Beremand et al., 1987, Arch. Biochem. Biophys. 256, 90-100). After expression of the new synthetic gene, purified ACP and ACP-His6 were obtained in yields of up to 70 mg L-1 of culture medium, compared to approximately 1-6 mg L-1 of purified ACP obtained from the gene composed of predicted spinach codons. In either shaken flask or fermentation culture, approximately 15% conversion to holo-ACP or holo-ACP-His6 was obtained regardless of the level of protein expression. However, coexpression of ACP-His6 with E. coli holo-ACP synthase in E. coli BL21(DE3) during pH- and dissolved O2-controlled fermentation routinely yielded greater than 95% conversion to holo-ACP-His6. Electrospray ionization mass spectrometric analysis of the purified recombinant ACPs revealed that the amino terminal Met was efficiently removed, but only if the bacterial cell lysates were prepared in the absence of EDTA. This observation is consistent with the inhibition of endogenous Met-aminopeptidase by removal of catalytically essential Co(II) and introduces the importance of considering the catalytic properties of host enzymes providing ad hoc posttranslational modification of recombinant proteins. Stearoyl-ACP-His6 was shown to be indistinguishable from stearoyl-ACP as a substrate for enzymatic acylation and desaturation. In combination, these studies provide a coordinated scheme to produce and characterize quantities of acyl-ACPs sufficient to support expanded biophysical and structural studies.  相似文献   

8.
Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl CoA carboxylase and this post-translational modification of a single lysine residue is exceptionally specific. The exact details of the protein-protein interactions involved are unclear as a BPL:BCCP complex has not yet been isolated. Moreover, detailed information is lacking on the composition, biosynthesis and role of fatty acids in hyperthermophilic organisms. We have cloned, overexpressed and purified recombinant BPL and the biotinyl domain of BCCP (BCCP Delta 67) from the extreme hyperthermophile Aquifex aeolicus. In vitro assays have demonstrated that BPL catalyses biotinylation of lysine 117 on BCCP Delta 67 at temperatures of up to 70 degrees C. Limited proteolysis of BPL with trypsin and chymotrypsin revealed a single protease-sensitive site located 44 residues from the N-terminus. This site is adjacent to the predicted substrate-binding site and proteolysis of BPL is significantly reduced in the presence of MgATP and biotin. Chemical crosslinking with 1-ethyl-3-(dimethylamino-propyl)-carbodiimide (EDC) allowed the isolation of a BPL:apo-BCCP Delta 67 complex. Furthermore, this complex was also formed between BPL and a BCCP Delta 67 mutant lacking the lysine residue (BCCP Delta 67 K117L) however, complex formation was considerably reduced using holo-BCCP Delta 67. These observations provide evidence that addition of the biotin prosthetic group reduces the ability of BCCP Delta 67 to heterodimerize with BPL, and emphasizes that a network of interactions between residues on both proteins mediates protein recognition.  相似文献   

9.
10.
Import of the acyl carrier protein (ACP) precursor into the chloroplast resulted in two products of about 14 kilodalton (kD) and 18 kD when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Time course experiments indicate that the latter is a modification derivative of the 14-kD peptide after the removal of the transit peptide. Substitution of serine 38 by alanine, eliminating the phosphopantetheine prosthetic group attachment site of ACP, produced a precursor mutant that gave rise to only the 14-kD peptide during import, showing that the modified form depends on the presence of serine 38. Furthermore, these results demonstrate that the prosthetic group is not essential for ACP translocation across the envelope or proteolytic processing. Analysis of the products of import by nondenaturing, conformationally sensitive gels showed reversal of the relative mobility of the 14-kD peptide and the modified form, raising the possibility that the modification is the addition of the phosphopantetheine. Proteolytic processing and the modification reaction were reconstituted in an organelle-free assay. The addition of coenzyme A to the organelle-free assay completely converted the 14-kD peptide to the modified form at 10 micromolar, and this only occurred with the wild-type substrate. Reciprocally, treatment of the products of a modification reaction with Escherichia coli phosphodiesterase converted the modified ACP from back to the 14-kD peptide. These results strongly support the conclusion that there is a holo-ACP synthase in the soluble compartment of the chloroplast capable of transferring the phosphopantetheine of coenzyme A to ACP.  相似文献   

11.
Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology.  相似文献   

12.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

13.
The transfer of the phosphopantetheine chain from coenzyme A (CoA) to the acyl carrier protein (ACP), a key protein in both fatty acid and polyketide synthesis, is catalyzed by ACP synthase (AcpS). Streptomyces coelicolor AcpS is a doubly promiscuous enzyme capable of activation of ACPs from both fatty acid and polyketide synthesis and catalyzes the transfer of modified CoA substrates. Five crystal structures have been determined, including those of ligand-free AcpS, complexes with CoA and acetyl-CoA, and two of the active site mutants, His110Ala and Asp111Ala. All five structures are trimeric and provide further insight into the mechanism of catalysis, revealing the first detailed structure of a group I active site with the essential magnesium in place. Modeling of ACP binding supported by mutational analysis suggests an explanation for the promiscuity in terms of both ACP partner and modified CoA substrates.  相似文献   

14.
Salmonella pathogenicity island 1 (SPI-1) carries genes required for the formation of a type 3 secretion system, which is necessary for the invasion process of Salmonella. Among the proteins encoded by SPI-1 is IacP, a homolog of acyl carrier proteins. Acyl carrier proteins are mainly involved in fatty acid biosynthesis, and they require posttranslational maturation by addition of a 4′-phosphopantetheine prosthetic group to be functional. In this study, we analyzed IacP maturation in vivo. By performing matrix-assisted laser desorption ionization–time-of-flight (MALDI-TOF) mass spectrometry analysis of intact purified proteins, we showed that IacP from Salmonella enterica serovar Typhimurium was matured by addition of 4′-phosphopantetheine to the conserved serine 38 residue. Therefore, we searched for the phosphopantetheinyl transferases in charge of IacP maturation. A bacterial two-hybrid approach revealed that IacP interacted with AcpS, an enzyme normally required for the maturation of the canonical acyl carrier protein (ACP), which is involved in fatty acid biosynthesis. The creation of a conditional acpS mutant then demonstrated that AcpS was necessary for the maturation of IacP. However, although IacP was similar to ACP and matured by using the same enzyme, IacP could not replace the essential function of ACP in fatty acid synthesis. Hence, the demonstration that IacP is matured by AcpS establishes a cross-connection between virulence and fatty acid biosynthesis pathways.  相似文献   

15.
To test the hypothesis that 70-kD mitochondrial heat shock protein (mt- hsp70) has a dual role in membrane translocation of preproteins we screened preproteins in an attempt to find examples which required either only the unfoldase or only the translocase function of mt-hsp70. We found that a series of fusion proteins containing amino-terminal portions of the intermembrane space protein cytochrome b2 (cyt. b2) fused to dihydrofolate reductase (DHFR) were differentially imported into mitochondria containing mutant hsp70s. A fusion protein between the amino-terminal 167 residues of the precursor of cyt. b2 and DHFR was efficiently transported into mitochondria independently of both hsp70 functions. When the length of the cyt. b2 portion was increased and included the heme binding domain, the fusion protein became dependent on the unfoldase function of mt-hsp70, presumably caused by a conformational restriction of the heme-bound preprotein. In the absence of heme the noncovalent heme binding domain in the longer fusion proteins no longer conferred a dependence on the unfoldase function. When the cyt. b2 portion of the fusion protein was less than 167 residues, its import was still independent of mt-hsp70 function; however, deletion of the intermembrane space sorting signal resulted in preproteins that ended up in the matrix of wild-type mitochondria and whose translocation was strictly dependent on the translocase function of mt-hsp70. These findings provide strong evidence for a dual role of mt-hsp70 in membrane translocation and indicate that preproteins with an intermembrane space sorting signal can be correctly imported even in mutants with severely impaired hsp70 function.  相似文献   

16.
The extremely tight binding between biotin and avidin or streptavidin makes labeling proteins with biotin a useful tool for many applications. BirA is the Escherichia coli biotin ligase that site-specifically biotinylates a lysine side chain within a 15-amino acid acceptor peptide (also known as Avi-tag). As a complementary approach to in vivo biotinylation of Avi-tag-bearing proteins, we developed a protocol for producing recombinant BirA ligase for in vitro biotinylation. The target protein was expressed as both thioredoxin and MBP fusions, and was released from the corresponding fusion by TEV protease. The liberated ligase was separated from its carrier using HisTrap HP column. We obtained 24.7 and 27.6 mg BirA ligase per liter of culture from thioredoxin and MBP fusion constructs, respectively. The recombinant enzyme was shown to be highly active in catalyzing in vitro biotinylation. The described protocol provides an effective means for making BirA ligase that can be used for biotinylation of different Avi-tag-bearing substrates.  相似文献   

17.
The homotypic fusion of yeast vacuoles requires the Rab-family GTPase Ypt7p and its effector complex, homotypic fusion and vacuole protein sorting complex (HOPS). Although the vacuolar kinase Yck3p is required for the sensitivity of vacuole fusion to proteins that regulate the Rab GTPase cycle-Gdi1p (GDP-dissociation inhibitor [GDI]) or Gyp1p/Gyp7p (GTPase-activating protein)-this kinase phosphorylates HOPS rather than Ypt7p. We addressed this puzzle in reconstituted proteoliposome fusion reactions with all-purified components. In the presence of HOPS and Sec17p/Sec18p, there is comparable fusion of 4-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteoliposomes when they have Ypt7p bearing either GDP or GTP, a striking exception to the rule that only GTP-bound forms of Ras-superfamily GTPases have active conformations. However, the phosphorylation of HOPS by recombinant Yck3p confers a strict requirement for GTP-bound Ypt7p for binding phosphorylated HOPS, for optimal membrane tethering, and for proteoliposome fusion. Added GTPase-activating protein promotes GTP hydrolysis by Ypt7p, and added GDI captures Ypt7p in its GDP-bound state during nucleotide cycling. In either case, the net conversion of Ypt7:GTP to Ypt7:GDP has no effect on HOPS binding or activity but blocks fusion mediated by phosphorylated HOPS. Thus guanine nucleotide specificity of the vacuolar fusion Rab Ypt7p is conferred through downstream posttranslational modification of its effector complex.  相似文献   

18.
The SEC61, SEC62 and SEC63 yeast gene products are membrane components of the apparatus that catalyses protein translocation into the endoplasmic reticulum (ER). In the hope of uncovering additional components of the translocation apparatus, we sought yeast genes whose overexpression would restore partial thermoresistance in a sec61 translocation-deficient mutant. The first extragenic Sec sixty-one suppressor, SSS1, is an essential single copy gene whose overexpression restores translocation in the sec61 mutant. Another extragenic suppressor was identified as TDH3, which encodes the major isozyme of the most abundant yeast protein, glyceraldehyde-3-phosphate dehydrogenase. TDH3 overexpression could exert an indirect effect by competitively inhibiting protein synthesis, thereby allowing the impaired translocation apparatus to cope with a reduced flow of newly synthesized secretory proteins. Depletion of the Sss1 protein rapidly results in accumulation of multiple secretory or membrane proteins devoid of post-translational modifications; the normally secreted alpha-factor accumulates on the cytosolic side of ER membranes. Thus, the SSS1 gene is required for continued translocation of secretory preproteins beyond their early association to ER membranes. Consistent with its essential role in protein translocation, the Sss1 protein localizes to the ER and homologues were detected in higher eukaryotes.  相似文献   

19.
Plemper RK  Deak PM  Otto RT  Wolf DH 《FEBS letters》1999,443(3):241-245
Misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently degraded by the cytosolic ubiquitin-proteasome system. This requires their retrograde transport from the ER lumen into the cytosol, which is mediated by the Sec61 translocon. It had remained a mystery whether ER-localised soluble proteins are at all capable of re-entering the Sec61 channel de novo or whether a permanent contact of the imported protein with the translocon is a prerequisite for retrograde transport. In this study we analysed two new variants of the mutated yeast carboxypeptidase yscY, CPY*: a carboxy-terminal fusion protein of CPY* and pig liver esterase and a CPY* species carrying an additional glycosylation site at its carboxy-terminus. With these constructs it can be demonstrated that the newly synthesised CPY* chain is not retained in the translocation channel but reaches its ER lumenal side completely. Our data indicate that the Sec61 channel provides the essential pore for protein transport through the ER membrane in either direction; persistent contact with the translocon after import seems not to be required for retrograde transport.  相似文献   

20.
Spinach ACP isoform I was overexpressed inEscherichia coliBL21(DE3) using a gene synthesized from codons associated with high-level expression inE. coli.The synthetic gene has extensive changes in codon usage (23 of 77 total codons) relative to that of the originally synthesized plant gene (P. D. Beremandet al.,1987,Arch. Biochem. Biophys.256, 90–100). After expression of the new synthetic gene, purified ACP and ACP-His6were obtained in yields of up to 70 mg L−1of culture medium, compared to 1–6 mg L−1of purified ACP obtained from the gene composed of predicted spinach codons. In either shaken flask or fermentation culture, 15% conversion to holo-ACP or holo-ACP-His6was obtained regardless of the level of protein expression. However, coexpression of ACP-His6withE. coliholo-ACP synthase inE. coliBL21(DE3) during pH- and dissolved O2-controlled fermentation routinely yielded greater than 95% conversion to holo-ACP-His6. Electrospray ionization mass spectrometric analysis of the purified recombinant ACPs revealed that the amino terminal Met was efficiently removed, but only if the bacterial cell lysates were prepared in the absence of EDTA. This observation is consistent with the inhibition of endogenous Met-aminopeptidase by removal of catalytically essential Co(II) and introduces the importance of considering the catalytic properties of host enzymes providing ad hoc posttranslational modification of recombinant proteins. Stearoyl-ACP-His6was shown to be indistinguishable from stearoyl-ACP as a substrate for enzymatic acylation and desaturation. In combination, these studies provide a coordinated scheme to produce and characterize quantities of acyl-ACPs sufficient to support expanded biophysical and structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号