首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic engineering of miniature pigs has facilitated the development of numerous biomedical applications, such as xenotransplantation and animal models for human diseases. Manipulation of the estrus is one of the essential techniques for the generation of transgenic offspring. The purpose of the present study was to establish a useful method for induction of the estrus in miniature gilts. A total of 38 pubertal miniature gilts derived from 4 different strains were treated with exogenous gonadotropins. Estrus and ovulatory response were examined after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as 200 IU PMSG and 100 IU hCG, 300 IU PMSG and 150 IU hCG, or 1,500 IU PMSG only, followed by 100, 150 or 750 IU hCG 72 h later, respectively. The optimal protocol was determined to be the combination treatment of 200 IU PMSG and 100 IU hCG followed by 100 IU hCG. The administration of 200 IU PMSG and 100 IU hCG was effective in inducing estrus regardless of the strain, although there was a strain difference in the ovulatory response. These results indicate that treatment with a low-dose combination of PMSG and hCG provides one of the simplest methods for induction of estrus and ovulation in pubertal miniature pigs.  相似文献   

2.
The induction of follicular growth, ovulation, and atresia by heterologous gonadotropic preparations was studied late in the reproductive cycle of the adult female guinea pig. Human chorionic gonadotropin (HCG) administration (10 IU) 12 days following the first signs of opening of the vaginal membrane was found to stimulate ovulation within 24 h in all animals studied, as evidenced by recovery of ova from their oviducts as well as the presence of postovulatory follicles in their ovaries. Histologically, ovaries of animals receiving HCG exhibited atretic changes in most of the follicles smaller than 999 micrometer in diameter. Pregnant mares serum gonadotropin (PMSG, 10 IU) administered on days 9 and 10 of the cycle was not sufficient to stimulate ovulation in this species although histological changes in the follicular complement were observed. Administration of PMSG prior to the HCG appeared to have an inhibitory effect on ovulation induction. Follicles luteinizing with entrapped ova were seen in all groups receiving exogenous gonadotropin, although they were most prevalent in the animals receiving the maximum total gonadotropin doses (i.e. PMSG + HCG).  相似文献   

3.
Baseline serum levels of progesterone and total immunoreactive estrogens were determined for intact and ovariectomized captive female Atlantic bottlenose dolphins (Tursiops truncatus), as well as newly captured wild adult females. Stimulation of ovarian follicular growth and ovulation was attempted by intramuscular injection of pregnant mare's serum gonadotropin (PMSG). High doses of PMSG were required to increase serum estrogen levels. When PMSG was followed by an injection of human chorionic gonadotropin (hCG), ovulation was presumed to have occurred as indicated by subsequent high levels of serum progesterone. From these observations, it appears that 1) females with progesterone levels greater than 3000 pg/ml over an extended period are pregnant, 2) Tursiops truncatus is capable of spontaneous ovulation in captivity without gonadotropin therapy, 3) captive female dolphins, although relatively resistant to PMSG, can be induced to ovulate using a combination of high intramuscular-injected doses of PMSG followed by hCG, and 4) spontaneous ovulation is likely to follow an induced ovulation.  相似文献   

4.
Exogenous gonadotropins and a laparoscopic intrauterine artificial insemination (AI) technique were assessed for effectiveness in the clouded leopard (Neofelis nebulosa), a species difficult to breed in captivity due to severe mate incompatibility. Fourteen hormone trials using 10 female clouded leopards were performed to evaluate the ability of 50, 100, or 200 i.u. pregnant mares' serum gonadotropin (PMSG) and 75 or 100 i.u. human chorionic gonadotropin (hCG) to induce folliculogenesis and ovulation, respectively. Laparoscopic evaluation of ovarian activity was conducted at 29–48 hr after hCG administration. Time of ovulation in PMSG/hCG-treated clouded leopards was approximately 38–39 hr after hCG. Excessive follicular development was observed using the high hormone dosages (200 i.u. PMSG/100 i.u. hCG), whereas the lower dosages avoided ovarian hyperstimulation. Previous ovulation sites and mature corpora lutea were detected upon laparoscopic examinations in two of the 10 females housed alone, indicating that this species occasionally spontaneously ovulates. Five females were inseminated by depositing electroejaculated, washed sperm transabdominally into the proximal aspect of each uterine horn. One postovulatory female, previously treated with 100 i.u. PMSG and 75 i.u. hCG and inseminated in utero with 88 × 106 motile sperm at 45 hr post-hCG, produced a pregnancy and two live cubs after an 89 day gestation. These results demonstrate: (1) an exquisite ovarian sensitivity to exogenous gonadotropins in clouded leopards; and (2) that artificial insemination has the potential of resulting in offspring in this species. (This article is a US Government work and, as such, is in the public domain in the United States of America.) © 1996 Wiley-Liss, Inc.  相似文献   

5.
Prepuberal gilts were treated with pregnant mare serum gonadotropin (PMSG) to study the effects of its dosage on ovulation rate, fertilization rate after artificial insemination, embryo viability, and rate of development and incidence of chromosome abnormalities in Day-4 embryos. Gilts received 750 IU, 1250 IU or 1500 IU of PMSG, followed 72 h later by 500 IU human chorionic gonadotropin (hCG). Gilts were inseminated 28 to 30 h following the hCG injection, and resulting embryos were collected on Day 4 post ovulation. Ovulation rate was higher in the 1250 IU group than in the 1500 IU group or the 750 IU group. The 1500 IU dose caused excessive stimulation of the ovary, resulting in the occurrence of large (>10mm diameter) unovulated follicles, reduced fertilization rate and low embryo recovery rate. There was no difference in the incidence of chromosome abnormalities among the three groups, although the 1500 IU group had higher embryonic mortality than the two lower dose groups. A dose of 1250 IU PMSG increased ovulation rate above that achieved by 750 IU and, therefore, increased the number of oocytes or embryos available for transfer or for other studies, without sacrificing embryo viability or increasing the incidence of chromosome abnormalities.  相似文献   

6.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

7.
The endangered Wyoming toad (Bufo baxteri) is the subject of an extensive captive breeding and reintroduction program. Wyoming toads in captivity rarely ovulate spontaneously and hormonal induction is used to ovulate females or to stimulate spermiation in males. With hormonal induction, ovulation is unreliable and egg numbers are low. The sequential administration of anovulatory doses of hormones (priming) has increased egg numbers and quality in both anurans and fish. Consequently, we tested the efficacy of a combination of human Chorionic Gonadotrophin (hCG) and Luteinizing Hormone Releasing Hormone analogue (LHRHa) administered as one dose, or two or three sequential doses to Bufo baxteri on egg numbers, fertilization and early embryo development. Spawning toads deposited eggs into Simplified Amphibian Ringers (SAR) solution to enable controlled in-vitro fertilization (IVF) with sperm from hormonally induced male toads. Unprimed females receiving a single mixed normally ovulatory dose of 500 IU hCG plus 4 micrograms of LHRHa produced no eggs. Whereas females primed with this dose and an anovulatory dose (100 IU hCG and 0.8 micrograms of LHRHa) of the same hormones, or primed only with an anovulatory dose, spawned after then receiving an ovulatory dose. Higher total egg numbers were produced with two primings than with one priming. Moreover, two primings produced significantly more eggs from each individual female than one priming. The cleavage rate of eggs was not found to differ between one or two primings. Nevertheless, embryo development with eggs from two primings gave a significantly greater percentage neurulation and swim-up than those from one priming. Of the male toads receiving a single dose of 300 IU hCG, 80% produced spermic urine with the greatest sperm concentration 7 hours post-administration (PA). However, peak sperm motility (95%) was achieved at 5 hours PA and remained relatively constant until declining 20 hours PA. In conclusion, Bufo baxteri egg numbers and quality benefited from sequential priming with LHRHa and hCG whereas spermic urine for IVF was produced from males with a single dose of hCG. The power of assisted reproduction technology in the conservation of endangered amphibians is shown by the release of nearly 2000 tadpoles produced by IVF during this study.  相似文献   

8.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

9.
The estrous cycle influence on the number of ovulated eggs after injection of pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) was investigated in 12, 18, and 24 weeks old adult female Wistar-Imamichi (WI) rats. PMSG (150 IU/kg) was injected at metestrus, diestrus, proestrus, or estrus, followed by hCG (75 IU/kg) 55 h later. Ovulation was induced at all ages and stages of the estrous cycle. The number of ovulated eggs was not affected by stage for similarly aged rats, however, the number of ovulated eggs obtained after treatment decreased with age. These results demonstrate that the PMSG/hCG treatment can induce ovulation at any stage of estrous cycle in WI rats and efficient superovulation at 12 weeks of age.  相似文献   

10.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

11.
The optimal dose of human chorionic gonadotropin (hCG) for induction of ovulation was determined by comparing the ovulatory response of 119 mated ferrets (controls) with that of estrous females induced to ovulate with five different dosages of hCG. Copulation induced formation of 12.7 ± 4.5 corpora lutea (CL) in all 119 females and resulted in a 90.7% conception rate as evidenced by finding approximately eight blastocysts/female in the uteri of 108 ferrets. All doses of hCG tested induced ovulation; however, the lower doses (50 and 75 IU) resulted in a lesser percentage of females ovulating. The highest doses of hCG (150 and 300 IU) resulted in fewer CL/female being formed. The optimal dose of hCG for simulating copulation induced ovulation was 100 IU. Tubal transport of unfertilized oocytes in pseudopregnant females was found to be significantly retarded when compared to the rate of transport of embryos in the control group.  相似文献   

12.
The purpose of this work was to investigate the effects of gonadotropin on the production capacity of ovarian 13,14-dihydro-prostaglandin F2-alpha (13,14H2-PGF2 alpha) and whether or not this capacity had any relation to the process of ovulation in rat. To induce the first ovulation, immature rats were injected subcutaneously with PMSG (5 IU/rat) at 8:00 at 26 days of age and some of these rats were followed by an intraperitoneal injection of hCG (10 IU/rat) at 57 hrs after PMSG treatment. The 13,14H2-PGF2 alpha production capacity was unchanged as compared with vehicle control until 57 hrs after PMSG treatment. However, the capacity showed a striking increase at 60 hrs after PMSG treatment. A maximal increase of about 7 fold was observed at 9 hrs after hCG injection just before ovulation. The production capacity of the Graafian follicle (GF) and the part (WO-GF) of the whole ovary (WO) from which the GF is removed at 2:00 on day 29 and the capacity of early corpus luteum at 8:00 on day 29 was greater than that of GF and WO-GF at 0:00 on day 29. These results suggest that the 13,14H2-PGF2 alpha production capacity in rat ovary is regulated by gonadotropin and is closely associated with the process of ovulation.  相似文献   

13.
We have examined the change in the ovarian 13,14-dihydro-prostaglandin F2 alpha (13,14H2-PGF2 alpha) forming capacity after the first ovulation induced by injection of pregnant mare serum gonadotropin (PMSG 5 IU, sc) at 26 days of age. After ovulation, the 13,14H2-PGF2 alpha forming capacity in the whole ovary (WO) and in non-luteal ovarian tissues (WO-CL) gradually decreased, whereas a rapid decrease of the synthesizing capacity was observed in corpus luteum (CL). The capacity in WO 4 days after ovulation (33 days of age) was markedly stimulated by human chorionic gonadotropin (hCG 10 IU, ip) administration, whereas CL at 33 days of age did not respond to the stimulatory effect of hCG. A single injection of hCG on day 7 after hypophysectomy resulted 12 hrs later in a significant increase in the forming capacity of 13,14H2-PGF2 alpha in WO-CL. These results indicate that the 13,14H2-PGF2 alpha forming capacity in CL rapidly decreases after the first ovulation and the WO-CL, but not CL, retain the ability to form 13,14H2-PGF2 alpha in response to exogenous gonadotropin for a long time.  相似文献   

14.
Prepubertal gilts given 750 IU pregnant mares′ serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation fail to ovulate when 10 mg/kg indomethacin (INDO) is injected 24 h after hCG administration. This study examines the effects of administration of exogenous prostaglandins F and E2 (PGF and PGE2) alone or in combination, and at various times prior to the expected time of ovulation, on the INDO blockade of ovulation in PMSG/hCG-treated gilts. Occurrence of ovulation was determined by visual observation at laparotomy 48 h after hCG. When 5 mg or 10 mg PGF was injected at each of 38, 40 and 42 h after hCG injection, 63% and 79%, respectively, of preovulatory follicles ovulated. In contrast, injection of 5 mg PGE2 or 5 mg PGE2 plus 5 mg PGF induced ovulation in 0% and 24% of preovulatory follicles, respectively. In control groups, 100% of folicles in PMSG/hCG-treated gilts ovulated whereas none did so in PMSG/hCG/INDO-treated animals. These results indicate that administration of PGF can induce ovulation in the PMSG/hCG/INDO-treated prepubertal gilt and suggest that PGE2 is ineffective and may be antagonistic to PGF in overcoming the ovulation blocking effect of INDO.  相似文献   

15.
The effects of progesterone (100 mg/d, im) on pubertal fertility were examined in 247 gilts over 3 experiments. In the first experiment, 128 gilts were exposed to progesterone for 0, 2, 4 or 8 d before receiving PMSG (750 IU) 1 d later. The number of large (>4mm) follicles or corpora lutea (CL) were determined on the day of PMSG injection, Day 0 (onset of estrus), Day 1 or Day 10 (n=8). In the second experiment, embryonic survival was observed in 68 gilts after induction of estrus with PG600 (400 IU PMSG, 200 IU hCG). Vehicle or progesterone was previously administered for 2 d to these gilts, and they were allowed 1, 2, or 3 d between the last progesterone injection and PG600. In Experiment 3, a field trial was conducted in which 51 gilts received vehicle or progesterone for 2 d, followed by a 3-d interval before injection of PG600 to induce estrus. The gilts were allowed to farrow. Treatment with progesterone 1 d before PMSG increased (P<0.05) the number and size of preovulatory follicles and increased (P<0.05) the number of corpora lutea. However, the percentage of gilts pregnant by Day 10, the number of embryos recovered per gilt and embryonic survival were reduced (P<0.05) with progesterone pretreatment. Utilizing a smaller dose of PMSG (750 vs 400 IU) with PG600 negated the effects of progesterone pretreatment on ovulation rate. When the interval between progesterone treatment and PG600 was lengthened to 3 d embryonic survival to Day 30 improved but was similar to that of the vehicle/PG600 treated gilts. Fertility, as defined as conception rate and litter size, was similar between gilts exposed to vehicle or progesterone. These results indicate that pretreatment with progesterone up to the day before PMSG might improve follicular development and ovulation rate at the pubertal estrus with a dose of 750 IU of PMSG but not with the 400 IU (PG600). Reducing the dose of PMSG to 400 IU and allowing for 3 d between progesterone and gonadotropin treatment reduced the incidence of uterine infections but resulted in a fertility rate similar to that of gilts receiving PG600 alone.  相似文献   

16.
The objective of this study was to examine the response of anestrous gilts to injections of pregnant mare's serum gonadotrophin (PMSG) alone or in combination with human chorionic gonadotrophin (hCG). One hundred and eighty gilts which had failed to exhibit estrus by about 33 wk of age were given one of the following treatments: no injection, 500 IU PMSG, 1000 IU PMSG or 400 IU PMSG + 200 IU hCG. A greater number of gilts injected with 1000 IU PMSG exhibited estrus within nine days of treatment than control gilts (21/37 vs 13/41, X(2) = 5.0, P<0.05). In addition, gilts injected with 1000 IU PMSG exhibited oestrus significantly earlier than gilts receiving the other treatments. In comparisons of the proportion of gilts ovulating within 9 d of treatment and the treatment-to-ovulation interval, there were no significant differences between the three exogenous hormone treatments. There was also no significant effect of treatment on farrowing rate or subsequent litter size. The results of our study indicate that treatment of anestrous gilts with 1000 IU PMSG effectively induces ovulation and fertile estrus. Inadequate expression of estrus often accompanied the ovulation induced by the lower dosages of PMSG used with and without hCG in this experiment.  相似文献   

17.
The avidin-biotin immunoperoxidase method and antisera to purified porcine relaxin were used to localize relaxin in sections of follicles from pregnant mare's serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG)-primed pigs during preovulatory development. Prepubertal pigs were treated i.m. with PMSG (750 IU) and 72 h later with hCG (500 IU) to induce follicular development and ovulation. Follicles were collected from untreated gilts or from gilts 24, 48, 60, 72, 84, 96, or 108 h after PMSG treatment. Light immunostaining in the theca interna was observed early in follicular development, at 48 and 60 h post-PMSG. At 72 h post-PMSG, relaxin immunostaining in the theca interna of the preovulatory follicle was more intense. After hCG treatment, the intense thecal immunostaining persisted and was apparent 84 and 96 h after PMSG. At about 6 h prior to expected ovulation (108 h post-PMSG), there was thinning of the follicle wall and a reduction in relaxin immunostaining in the theca interna. Immunoactive relaxin was not detected in follicles from untreated gilts, follicles 24 h post-PMSG, small healthy or atretic follicles, or in granulosa cells, theca externa or ovarian stroma, at any of the time points studied. These studies support the hypothesis that the theca interna is the primary source of follicular relaxin and provide further evidence for a paracrine role for relaxin in the ovulatory process.  相似文献   

18.
The plasminogen activator/plasmin synthetic substrate S-2251 was used to measure the effect of indomethacin, cycloheximide, colchicine, dexamethasone, tranexamic acid, and aprotinin on the elevation of ovarian plasminogen activator (PA) that normally occurs during ovulation in the rat. Young Wistar rats were weaned on the morning of Day 21, given 4.0 IU of pregnant mare's serum gonadotropin (PMSG) s.c. at 0800 h on Day 22, and given 10.0 IU of human chorionic gonadotropin (hCG) on Day 24. These animals normally began ovulating between 0000 and 0200 h on Day 25. The induced ovulation rate was 11.5 +/- 2.2 ova/rat, based on the number of ova in the oviducts of control animals at 0900 h on Day 25. In the controls, PA activity in extracts of homogenized ovaries increased 3-fold from 0.125 +/- 0.010 OD units just before the administration of hCG to 0.371 +/- 0.021 at 12 h after hCG, i.e., near the time of ovulation. Indomethacin, in doses of 0.1-1.0 mg/rat, inhibited ovulation but did not inhibit the normal increase in PA activity, whereas indomethacin at the high dose of 10.0 mg/rat inhibited both ovulation and PA activity. Cycloheximide, at a dose of 0.1 mg/rat, was given at 12 h before hCG, immediately after hCG, and at 9 h after hCG. This agent inhibited ovulation most effectively when given at 12 h before hCG, yet it inhibited PA activity most effectively when given immediately after or at 9 h after hCG. Colchicine, at a dose of 0.1 mg/rat, inhibited ovulation, but not PA activity, when it was given 1 h before hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A cytokine-induced neutrophil chemoattractant (CINC/gro), which belongs to the interleukin (IL)-8 family, acts as a functional chemoattractant for neutrophils in rats. In the present study, we examined whether CINC/gro contributes to the ovulation process in the rat ovulation system. In rat ovaries, CINC/gro was immunohistochemically recognized in the theca layer of the antral follicle but not in the granulosa cells. To clarify the role of CINC/gro in the ovulation process, CINC/gro protein and mRNA were examined during pregnant mare serum gonadotropin (PMSG)-hCG treatment. CINC/gro protein did not increase as a result of PMSG injection. However, it increased rapidly after hCG injection and peaked at 6 h after hCG. CINC/gro mRNA was also strongly expressed after hCG injection. The increase of CINC/gro protein followed increases in IL-1beta and tumor necrosis factor alpha (TNFalpha). In the whole ovarian dispersate culture, FSH, hCG, IL-1beta, and TNFalpha stimulated the production of CINC/gro protein in a dose-dependent manner. In particular, the stimulatory effects of IL-1beta and TNFalpha were stronger than those of gonadotropins. These results suggest that CINC/gro plays an important role in the rat ovulation process by attracting neutrophils. CINC/gro increased just prior to ovulation, and it may be regulated directly by cytokines such as IL-1beta and TNFalpha and indirectly by gonadotropins.  相似文献   

20.
During the days preceding the first ovulation the ovary of the rat exhibits a remarkable increase in estradiol (E2) and progesterone (P) release in response to gonadotropins. No such increase is observed in the case of androgens (A, testosterone + dihydrotestosterone). The present experiments were undertaken to examine the possibility of reproducing these developmental events by stimulating the ovary with a gonadotropin that has substantial FSH-like activity. In vivo administration of pregnant mare serum gonadotropin (PMSG) to juvenile 29-day-old rats greatly increased the in vitro E2 and A response to human chorionic gonadotropin (hCG) measured 2 days later in the morning. The magnitude of the A response was significantly larger than that of ovaries from juvenile animals or rats in first proestrus. The E2 response was much greater than that of juvenile ovaries but similar to that of ovaries from late proestrous rats. In contrast, the P response to hCG was not enhanced by PMSG. In fact the response was similar to that of juvenile ovaries and markedly less than that of first proestrous rats. This decreased P response was not due to a greater conversion of P to its less active metabolite 20 alpha-hydroxy-4-pregnen-3-one (20 alpha-OH-P). The results suggest that PMSG enhances the E2 and A response of immature ovaries to hCG at the expense of that of P. Treatment of immature rats with PMSG may represent a useful model to study E2 release from preovulatory ovaries, but it cannot be used to reproduce in its entirety the developmental changes in steroidal response to gonadotropins associated with normal puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号