首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yang J  Wang L  Zhang H  Qiu L  Wang H  Song L 《PloS one》2011,6(2):e17089

Background

C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins that play significant diverse roles in nonself-recognition and clearance of invaders. Though they are well characterized in vertebrates, the study of the potential function and mechanism of C-type lectins in invertebrate immunity is still in its infancy.

Methodology

A C-type lectin (CfLec-1) from scallop Chlamys farreri, a dominant cultured mollusk species in China, was selected to investigate its mRNA expression, localization and the possible functions in innate immunity in the present study. After scallop was stimulated by three typical PAMPs, the mRNA expression of CfLec-1 in hemocytes was poles apart. It was significantly up-regulated (p<0.01) after scallops were stimulated by LPS or β-glucan, but significantly down-regulated (p<0.01) after PGN stimulation. The binding ability of recombinant CfLec-1 (designated as rCfLec-1) towards eight PAMPs was investigated subsequently by PAMPs microarray, which revealed rCfLec-1 could bind LPS, PGN and mannan in vitro, indicating CfLec-1 served as a PRR involved in the pathogen recognition. Immunofluorescence assay with polyclonal antibody specific for CfLec-1 revealed that CfLec-1 was mainly located in the mantle and gill of the scallop. CfLec-1 could bind to the surface of scallop hemocytes and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-1 antibody. Meanwhile, rCfLec-1 could also enhance the phagocytic activity of scallop hemocytes against Escherichia coli.

Conclusions

The results clearly suggested that CfLec-1 in C. farreri not only served as a PRR involved in the PAMPs recognition, but also functioned as an opsonin participating in the clearance of invaders. It is therefore suspected that CfLec-1 could be an attachment-molecule to nonself-agents acting as an alternative to immunoglobulin in vertebrates.  相似文献   

3.
4.
5.
6.
L Chen  J Su  C Yang  L Peng  Q Wan  L Wang 《PloS one》2012,7(7):e42182

Background

RIG-I (retinoic acid inducible gene-I) is one of the key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) and mediating the induction of type I interferon and inflammatory cytokines in innate immune response. Though the mechanism is well characterized in mammals, the study of the accurate function of RIG-I in teleosts is still in its infancy.

Methodology/Principal Findings

To clarify the functional characterizations of RIG-I in grass carp Ctenopharyngodon idella (CiRIG-I), six representative overexpression plasmids were constructed and transfected into C. idella kidney (CIK) cell lines to obtain stably expressing recombinant proteins, respectively. A virus titer test and 96-well plate staining assay showed that all constructs exhibited the antiviral activity somewhat. The quantitative real-time RT-PCR (qRT-PCR) demonstrated that mRNA expressions of CiIPS-1, CiIFN-I and CiMx2 were regulated by not only virus (GCRV) or viral PAMP (poly(IC)) challenge but also bacterial PAMPs (LPS and PGN) stimulation in the steadily transfected cells. The results showed that the full-length CiRIG-I played a key role in RLR pathway. The repressor domain (RD) exerted an inhibitory function of the signaling channel under all utilized challenges. Caspase activation and recruitment domains (CARDs) showed a positive role in GCRV and poly(I:C) challenge. Helicase motifs were crucial for the signaling pathway upon LPS and PGN stimulation. Interestingly, ΔCARDs (CARDs deleted) showed postive modulation in RIG-I signal transduction.

Conclusions/Significance

The results provided some novel insights into RIG-I sensing with a strikingly broad regulation in teleosts, responding not only to the dsRNA virus or synthetic dsRNA but also bacterial PAMPs.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Yang C  Zhang L  Wang L  Zhang H  Qiu L  Siva VS  Song L 《PloS one》2011,6(12):e28564

Background

Heat shock protein 22 is a member of small heat shock proteins with molecular chaperone activity. Though their multiple functions have been well characterized, there is no report about the association between the polymorphisms of HSP22 and heat tolerance.

Methodology

Three single nucleotide polymorphisms were identified in HSP22 from scallop Chlamys farreri (CfHSP22), and the +94 C-A locus was found to be nonsynonymous. Three genotypes at locus +94, A/A, A/C and C/C, were revealed by using Bi-PASA PCR analysis, and their frequencies were 19.5%, 27.6% and 52.9% in the heat resistant stock, while 9.3%, 17.4% and 73.3% in the heat susceptible stock, respectively. The frequency differences of the three genotypes were significant (P<0.05) between the two stocks. After incubating at 30°C for 84 h, the cumulative mortality of scallops with +94 C/C genotype and +94 A/C genotypes was 95% and 90%, respectively, which was significantly higher (P<0.01) than that of scallops with +94 A/A genotype (70%). The molecular chaperone activity of two His-tagged fusion proteins, rCfHSP22Q with +94 C/C genotype and rCfHSP22K with +94 A/A genotype were analyzed by testing the ability of protecting citrate synthase (CS) against thermal inactivation in vitro. After incubated with rCfHSP22Q or rCfHSP22K at 38°C for 1 h, the activity of CS lost 50% and 45%, and then recovered to 89% and 95% of the original activity following 1 h restoration at 22°C, respectively, indicating that the mutation from Gln to Lys at this site might have an impact on molecular chaperone activities of CfHSP22.

Conclusions

These results implied that the polymorphism at locus +94 of CfHSP22 was associated with heat tolerance of scallop, and the +94 A/A genotype could be a potential marker available in future selection of Zhikong scallop with heat tolerance.  相似文献   

17.
A monoclonal antibody (MAb) 6H7 raised specifically against granulocytes of scallop (Chlamys farreri) was employed to observe granulocyte occurrence successively in blastulae, gastrulae, trochophore larvae, D-shape larvae, umbo-veliger larvae and creeping larvae of C. farreri by immunohistochemistry assay contrasted with H&E stain using semi-thin sections. Moreover, the reactivity of the MAb with granulocytes of C. farreri, Bay scallop Argopecten irradians, Japanese scallop Patinopecten yessoensis, Blue mussel Mytilus edulis, Pacific oyster Crassostrea gigas and Manila clam Ruditapes philippinarum, was detected by immunofluorescence assay (IFA) with differential interference contrast and fluorescent microscopy and flow cytometric immunofluorescence assay (FCIFA). The results showed that positive signals were first observed at D-shape larval stage, about 28 h post fertilization, after that, umbo-veliger larvae exhibited the positive cells with a diameter of 3–5 μm distributed in velum, digestive gland and esophagus. Then in creeping larvae, the number of positive cells increased with average diameter of 5–7 μm, and widely distributed in foot, digestive gland, gills and adductor muscles. No positive signal was found in blastulae, gastrulae and trochophore larvae. The results of IFA and FCIFA showed MAb 6H7 reacted to granulocytes of C. farreri, A. irradians, P. yessoensis and C. gigas, and the positive percentage reactivity were 53 ± 2.5%, 15 ± 2.5%, 12 ± 2.1% and 19 ± 2.1%, respectively, however, no cross-reaction was detected in hemocytes of R. philippinarum and M. edulis.  相似文献   

18.
Nitric oxide (NO) is an important signalling molecule which plays an indispensable role in immunity of all vertebrates and invertebrates. In the present study, the immunomodulation of inducible NO in scallop Chlamys farreri was examined by monitoring the alterations of haemocyte behaviours and related immune molecules in response to the stimulations of LPS and/or with S-Methylisothiourea Sulphate (SMT), an inhibitor of inducible NO synthase (NOS). The total activity of NOS and NO concentration in the haemolymph of scallop C. farreri increased significantly at 3, 6 and 12 h after LPS stimulation respectively, whereas their increases were fully repressed when scallops were treated in the collaborating of LPS and SMT. Meanwhile, some cellular and humoral immune parameters were determined after the stimulation of LPS and SMT to investigate the role of inducible NO in innate immunity of scallop. After LPS stimulation, the highest levels of haemocytes apoptosis and phagocytosis were observed at 24 h (38.5 ± 2.5%, P < 0.01) and 12 h (38.6 ± 0.2%, P < 0.01), respectively, and the reactive oxygen species (ROS) level (5.88 ± 0.90%, P < 0.01) of haemocytes and anti-bacterial activity of haemolymph (10.0 ± 2.2%, P < 0.01) all elevated dramatically at 12 h. Although the activity of lysozyme and phenoloxidase (PO) in haemolymph both declined at 48 h (93.0 ± 6.3 U mgprot?1, 0.40 ± 0.06 U mgprot?1, P < 0.01), superoxide dismutase (SOD) activity and GSH concentration both increased to the highest level at 24 h post treatment (99.2 ± 8.1 U mgprot?1, 93.0 ± 6.3 nmol mgprot?1, P < 0.01). After the collaborating treatment of LPS and SMT, the apoptosis index increased much higher from 48 h, while the increase of haemocytes phagocytosis, ROS level and haemolymph anti-bacteria activities were suppressed completely at 12 h. The declines of lysozyme and PO activity in haemolymph were reversed at 48 h, and the rise of SOD activity and GSH concentration started earlier from 3 h. These results indicated clearly that NO could participate in the scallop immunity and play a crucial role in the modulation of immune response including haemocytes apoptosis and phagocytosis, anti-bacterial activity and redox homeostasis in the haemolymph of scallop.  相似文献   

19.
20.

Background

Inflammatory bowel diseases (IBDs) appear to be modulated by the interaction of pathogen-associated molecular patterns (PAMPs) derived from intestinal bacteria with their respective innate immune receptors, including Toll-like receptors (TLRs). We aimed to establish if intestinal concentrations of proinflammatory bacterial ligands of TLR2, TLR4, or TLR5 may be altered in murine IBD models, and to characterize which of the major bacterial groups may contribute to each signal.

Methodology/Principal Findings

PAMPs specific for TLR2 (lipopeptide equivalents), TLR4 (lipopolysaccharide equivalents), and TLR5 (flagellin equivalents) in human and murine fecal and intestinal samples were quantified using HEK-293 cells transfected with respective TLRs and calibrated with defined standard PAMPs. The induction of colitis in mice by dextran-sodium-sulphate treatment significantly increased colonic lipopeptide (fourfold) and LPS equivalent (550-fold) concentrations, while flagellin equivalent concentrations remained similar. The induction of ileitis by oral infection with Toxoplasma gondii dramatically increased ileal concentrations of lipopeptide (370-fold), LPS (3,300-fold), and flagellin equivalents (38-fold), all P<0.01. Analysis of representative strains of the major bacterial groups of the human intestine revealed that enterobacterial species are likely to be more significant contributors of soluble TLR2 and TLR4 stimulants to the intestinal milieu than Bacteroides species or Gram-positive Firmicutes.

Conclusions/Significance

We conclude that the induction of colitis or ileitis in mice is associated with significant disease-specific alterations to the PAMP profile of the gut microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号