首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of an ongoing complete taxonomic revision of Halenia (Gentianaceae), the new taxa Halenia perijana K.B. Hagen and H. major subsp. meridensis K.B. Hagen are described from Colombia and Venezuela, respectively. Flower morphology suggests that both taxa belong to the Halenia viridis group. H. perijana is vegetatively well separated from its probable closest relatives, and the only member of Halenia from a small and rather isolated mountain range. The new subspecies meridensis has small remnants of nectary spurs, and probably links the unspurred viridis group to its prominently spurred Central American sister group. Previous molecular clock approaches showed that the viridis group arrived in South America approximately at the same time as the weddelliana group, the distantly related second major South American group, which contains species with prominent spurs. Based on the new extensive knowledge of all species, the distribution patterns of both groups in Colombia and Venezuela are compared. The existence of marked differences—weddelliana group species grow in sympatry more often than species of the viridis group—is consistent with a key innovation effect of the presence/absence of nectary spurs, i.e., the reduction of pollinator overlap mediated by the presence of nectary spurs may allow sympatric speciation or remigration after a shorter phase of allopatric differentiation. However, this new evidence is relatively weak due to lack of statistical support and several other unresolved problems.  相似文献   

2.
The study of traits that play a key role in promoting diversification is central to evolutionary biology. Floral nectar spurs are among the few plant traits that correlate with an enhanced rate of diversification, supporting the claim that they are key innovations. Slight changes in spur morphology could confer some degree of premating isolation, explaining why clades with spurs tend to include more species than their spurless close relatives. We explored whether the cyathial nectar spur of the Pedilanthus clade (Euphorbia) may also function as a key innovation. We estimated the phylogeny of the Pedilanthus clade using one plastid (matK) and three nuclear regions (ITS and two G3pdh loci) and used our results and a Yule model of diversification to test the hypothesis that the cyathial spur correlates with an increased diversification rate. We found a lack of statistical support for the key innovation hypothesis unless specific assumptions regarding the phylogeny apply. However, the young age (hence small size) of the group may limit our ability to detect a significant increase in diversification rate. Additionally, our results confirm previous species designations, indicate higher homoplasy in cyathial than in vegetative features, and suggest a possible Central American origin of the group.  相似文献   

3.
Floral isolation has been considered to be an important reproductive mechanism governing the species diversification in many genera. In a classic example Aquilegia, sympatric species from North America with diverse floral traits are generally associated with specialized pollinators that prohibit interspecific hybridization. It remains unclear whether species diversification in the genus from Eurasia is also maintained by floral isolation. We investigated floral phenology, floral characteristics and pollinators in three sympatric Aquilegia species (A. ecalcarata, A. incurvata and A. yabeana) in the Qinling Mountains, Shanxi Province, China from 2001 to 2005. The spurless A. ecalcarata flowers earlier than the other two species with nectar spurs but their floral phenology overlaps. Major pollinators of A. ecalcarata are syrphid flies while bumblebees are major for A. incurvata and A. yabeana. Therefore our observations confirm that mechanical isolation through differential pollinators could contribute reproductive isolation between spurless and spurred species, as demonstrated by studies from North America. Whether floral isolation plays a major role in the reproductive isolation between two spurred species (A. incurvata and A. yabeana), however, remains to be seen. Further studies are required to quantify the potential role of geographical isolation because they occupy different habitats.  相似文献   

4.
Phylogenetic evidence for biological traits that increase the net diversification rate of lineages (key innovations) is most commonly drawn from comparisons of clade size. This can work well for ancient, unreversed traits and for correlating multiple trait origins with higher diversification rates, but it is less suitable for unique events, recently evolved innovations, and traits that exhibit homoplasy. Here I present a new method for detecting the phylogenetic signature of key innovations that tests whether the evolutionary history of the candidate trait is associated with shorter waiting times between cladogenesis events. The method employs stochastic models of character evolution and cladogenesis and integrates well into a Bayesian framework in which uncertainty in historical inferences (such as phylogenetic relationships) is allowed. Applied to a well-known example in plants, nectar spurs in columbines, the method gives much stronger support to the key innovation hypothesis than previous tests.  相似文献   

5.
Unraveling the diversification history of old, species-rich and widespread clades is difficult because of extinction, undersampling, and taxonomic uncertainty. In the context of these challenges, we investigated the timing and mode of lineage diversification in Senna (Leguminosae) to gain insights into the evolutionary role of extrafloral nectaries (EFNs). EFNs secrete nectar, attracting ants and forming ecologically important ant-plant mutualisms. In Senna, EFNs characterize one large clade (EFN clade), including 80% of its 350 species. Taxonomic accounts make Senna the largest caesalpinioid genus, but quantitative comparisons to other taxa require inferences about rates. Molecular dating analyses suggest that Senna originated in the early Eocene, and its major lineages appeared during early/mid Eocene to early Oligocene. EFNs evolved in the late Eocene, after the main radiation of ants. The EFN clade diversified faster, becoming significantly more species-rich than non-EFN clades. The shift in diversification rates associated with EFN evolution supports the hypothesis that EFNs represent a (relatively old) key innovation in Senna. EFNs may have promoted the colonization of new habitats appearing with the early uplift of the Andes. This would explain the distinctive geographic concentration of the EFN clade in South America.  相似文献   

6.

Background

The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000–300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances.

Methodology/Principal Findings

Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions.

Conclusions/Significance

Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on large-scale diversification.  相似文献   

7.
Nectar spurs have an important role in floral evolution and plant–pollinator coadaptation. The flowers of some species possess spurs curving into a circle. However, it is unclear whether spur circle diameter is under direct selection pressure from different sources, such as pollinators and nectar robbers. In this study, we quantified selection on some floral traits, such as spur circle diameter in Impatiens oxyanthera (Balsaminaceae) using phenotypic selection analysis and compared the relative importance of pollinators and nectar robbers as selective agents using mediation analysis. The study showed that pollinators caused significant selection on corolla length, spur curvature and spur circle diameter while nectar robbers only imposed strong selection on spur circle diameter. Pollinators favored flowers with large corolla, curly spurs and large spur circle while nectar robbers preferred flowers with small spur circle. More pollinator visits resulted in higher female reproductive success, while robbery reduced female fitness. Conflicting selection on spur traits from pollinators and nectar robbers was not found. Mediation analysis showed that selection on floral traits through nectar robbing was stronger than selection through pollination. The results suggested that pollinators and nectar robbers jointly mediated the directional selection for large spur circle, and nectar robbers caused stronger selection than pollinators on floral traits.  相似文献   

8.
The historical biogeography of insects in South America is largely unknown, as dated phylogenies have not been available for most groups. We have studied the phylogenetic relationships and historical biogeography of a subtribe of butterflies, Phyciodina in the family Nymphalidae, based on one mitochondrial gene (COI) and two nuclear gene regions (EF-1alpha and wingless). The subtribe comprises 89 species mainly found in tropical South America, with a few species in North America and the Greater Antilles. We find that the enigmatic genus Antillea is sister to the rest of Phyciodina, and suggest that it should be included in the subtribe. Several genera are found to be polyphyletic or nested within another genus, and are proposed to be synonymised. These are Dagon, Castilia, Telenassa and Janatella, which we propose should be synonymised with Eresia. Brazilian "Ortilia" form an independent lineage and require a new genus name. The diversification of Phyciodina has probably taken place over the past about 34 MYA. The ancestral phyciodine colonised South America from North America through a possible landspan that connected the Greater Antilles to South America about 34MYA. A vicariance event left the ancestral Antillea on the Greater Antilles, while the ancestral 0e on South America colonised the Guyanan Shield and soon after the Brazilian Shield. We hypothesise that the Brazilian Shield was an important area for the diversification of Phyciodina. From there, the ancestor of Anthanassa, Eresia and Tegosa colonised NW South America, where especially Eresia diversified in concert with the rising of the Andes beginning about 20 MYA. Central America was colonised from NW South America about 15 MYA by the ancestors of Anthanassa and Phyciodes. Our study is the first to use a dated phylogeny to study the historical biogeography of a group of South American species of butterflies.  相似文献   

9.
Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth-death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18-0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48-1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89-3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36-1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for "replicate adaptive radiations" in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New World.  相似文献   

10.
The extant distribution of sigmodontine rodents encompasses most of the New World, and the majority of the species in this subfamily inhabit South America. Nevertheless, the basal lineages of the Sigmodontinae are distributed in North and Central America, and the fossil record indicates a North American origin. This evidence has produced contentious theories concerning the evolution of these rodents. The dispute usually stems from a disagreement about the way in which sigmodontines reached South America, which was an isolated landmass during most of the Cenozoic. Fundamentally, the debate is associated with the role of Panamanian Isthmus formation and the Great American Biotic Interchange (GABI) in the diversification of the clade. An early hypothesis implies that sigmodontines arrived in South America before the complete rise of the Panamanian Isthmus, whereas a late hypothesis directly correlates the diversification of the lineage with this event. To address this question, we have sequenced nuclear and mitochondrial sequences, as well as the first Sigmodontinae mitochondrial genomes (Akodon montensis and Wiedomys cerradensis) and performed a Bayesian dating analysis. Our results showed that the most recent common ancestor of the subfamily lived at approximately 15 Ma. Although the diversification of sigmodontines was not associated with the complete rise of the Panamanian Isthmus, we cannot exclude the hypothesis that this event played a relevant role in the evolution of the lineage during the Miocene.  相似文献   

11.
Kazuo  Suzuki 《Plant Species Biology》1987,2(1-2):137-140
Abstract The followings are detected in the plants derived from hybridization between Epimedium diphyllum and E. sempervirens. Bombus ardens queen sucked nectar from flowers with spurs of which lengths correspond to those of the bees' proboscides. Queens of B. ardens and males and females of Tetralonia nipponensis sucked nectar indiscriminately from reddish purple and white flowers. B. hypocrita queens, which were not pollinators, perforated spurs and thieved nectar.  相似文献   

12.
Traits are basic attributes of organisms that form the basis for speciation and diversity. The floral nectar spur is a classic example of a key innovative trait. Differences in nectar spur morphology can lead to pollinator specialization and thereby promote reproductive isolation between species. Despite its importance, the nectar spur has been lost in some members of the columbine genus (Aquilegia), resulting in a new spurless trait, and the evolutionary influence of this trait has become a topic of scientific interest. Aquilegia ecalcarata is an important representative columbine species that lacks spurs. Here, we resequenced the genomes of 324 individuals from A. ecalcarata and four related species. We found that A. ecalcarata was divided into three groups based on the phylogenetic relationships and population genetic structures. Topology weighting analysis revealed that A. ecalcarata has multiple origins, and Patterson′s D statistic showed that the spurless trait may have one origin. Floral morphological analysis revealed significant differences between A. ecalcarata and its spurred sister groups, and the floral phenotypes of the three A. ecalcarata groups have identical or similar floral phenotypes. Our results confirmed that the spurless trait not only produced the phenotype of A. ecalcarata but also contributed to the emergence of the A. rockii phenotype. Moreover, the spurless trait promoted the divergence between A. ecalcarata and its close, spurred relatives. Our research shows that the loss of key innovative traits can play a very important role in speciation and species diversity.  相似文献   

13.
Tectonic dynamics and niche availability play intertwined roles in determining patterns of diversification. Such drivers explain the current distribution of many clades, whereas events such as the rise of angiosperms can have more specific impacts, such as on the diversification rates of herbivores. The Tortricidae, a diverse group of phytophagous moths, are ideal for testing the effects of these determinants on the diversification of herbivorous clades. To estimate ancestral areas and diversification patterns in Tortricidae, a complete tribal‐level dated tree was inferred using molecular markers (one mitochondrial and five nuclear) and calibrated using fossil constraints. We found that Tortricidae diverged from their sister group c. 120 Myr ago (Ma) and diversified c. 97 Ma, a timeframe synchronous with the rise of angiosperms in the Early–mid Cretaceous. Ancestral areas analysis, based on updated Wallace's biogeographical regions, supports the hypothesis of a Gondwanan origin of Tortricidae in the South American plate. We also detected an increase in speciation rate that coincided with the peak of angiosperm diversification in the Cretaceous. This in turn probably was further heightened by continental colonization of the Palaeotropics when angiosperms became dominant by the end of the Late Cretaceous.  相似文献   

14.
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower–pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin''s model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.  相似文献   

15.
Chrysosplenium (Saxifragaceae) consists of 57 species widely distributed in temperate and arctic regions of the Northern Hemisphere, with two species restricted to the southern part of South America. Species relationships within the genus are highly problematic. The genus has traditionally been divided into two groups, sometimes recognized as sections (Oppositifolia and Alternifolia), based on leaf arrangement, or, alternatively, into 17 series. Based on morphological features, Hara suggested that the genus originated in South America and then subsequently migrated to the Northern Hemisphere. We conducted phylogenetic analyses of DNA sequences of the chloroplast gene matK for species of Chrysosplenium to elucidate relationships, test Hara's biogeographic hypothesis for the genus, and examine chromosomal and gynoecial diversification. These analyses revealed that both sections Oppositifolia and Alternifolia are monophyletic and form two large sister clades. Hence, leaf arrangement is a good indicator of relationships within this genus. Hara's series Pilosa and Macrostemon are each also monophyletic; however, series Oppositifolia, Alternifolia, and Nepalensia are clearly not monophyletic. MacClade reconstructions suggest that the genus arose in Eastern Asia, rather than in South America, with several independent migration events from Asia to the New World. In one well-defined subclade, species from eastern and western North America form a discrete clade, with Old World species as their sister group, suggesting that the eastern and western North American taxa diverged following migration to that continent. The South American species forms a clade with species from eastern Asia; this disjunction may be the result of ancient long-distance dispersal. Character mapping demonstrated that gynoecial diversification is dynamic, with reversals from inferior to half-inferior ovaries, as well as to ovaries that appear superior. Chromosomal evolution also appears to be labile with several independent origins of n = 12 (from an original number of n = 11) and multiple episodes of aneuploidy.  相似文献   

16.
The large terrestrial orchid genus Satyrium underwent evolutionary radiations in the Cape floral region and the grasslands of southern and eastern Africa. These radiations were accompanied by tremendous diversification of the unusual twin-spurred flowers that characterize the genus, but pollination data required to interpret these patterns of floral evolution have been lacking for grassland species in the genus. Here we document pollinators, nectar properties, and levels of pollination success for 11 grassland Satyrium species in southern and south-central Africa. Pollinators of these species include bees, beetles, butterflies, hawkmoths, noctuid moths, long-proboscid flies, and sunbirds. Most species appear to be specialized for pollination by one functional pollinator group. Long-proboscid fly pollination systems are reported for the first time in Satyrium (in S. macrophyllum and a high-altitude form of S. neglectum). Floral morphology, especially spur length and rostellum structure, differs markedly among plants with different pollinators, while nectar volume, concentration, and sugar composition are fairly uniform across species. Most taxa exhibited high levels of pollination success (>50% of flowers pollinated), a trend that can be attributed to the presence of nectar in the twin spurs.  相似文献   

17.
Aim The evolutionary history of bees is presumed to extend back in time to the Early Cretaceous. Among all major clades of bees, Colletidae has been a prime example of an ancient group whose Gondwanan origin probably precedes the complete break‐up of Africa, Antarctica, Australia and South America, because modern lineages of this family occur primarily in southern continents. In this paper, we aim to study the temporal and spatial diversification of colletid bees to better understand the processes that have resulted in the present southern disjunctions. Location Southern continents. Methods We assembled a dataset comprising four nuclear genes of a broad sample of Colletidae. We used Bayesian inference analyses to estimate the phylogenetic tree topology and divergence times. Biogeographical relationships were investigated using event‐based analytical methods: a Bayesian approach to dispersal–vicariance analysis, a likelihood‐based dispersal–extinction–cladogenesis model and a Bayesian model. We also used lineage through time analyses to explore the tempo of radiations of Colletidae and their context in the biogeographical history of these bees. Results Initial diversification of Colletidae took place at the Late Cretaceous (≥ 70 Ma). Several (6–14) lineage exchanges between Australia and South America via Antarctica during the Late Cretaceous and Eocene epochs could explain the disjunctions observed between colletid lineages today. All biogeographical methods consistently indicated that there were multiple lineage exchanges between South America and Australia, and these approaches were valuable in exploring the degree of uncertainty inherent in the ancestral reconstructions. Biogeographical and dating results preclude an explanation of Scrapterinae in Africa as a result of vicariance, so one dispersal event is assumed to explain the disjunction in relation to Euryglossinae. The net diversification rate was found to be highest in the recent history of colletid evolution. Main conclusions The biogeography and macroevolutionary history of colletid bees can be explained by a combination of Cenozoic vicariance and palaeoclimatic changes during the Neogene. The austral connection and posterior break‐up of South America, Antarctica and Australia resulted in a pattern of disjunct sister lineages. Increased biome aridification coupled with floristic diversification in the southern continents during the Neogene may have contributed to the high rates of cladogenesis in these bees in the last 25–30 million years.  相似文献   

18.
Despite the considerable research that has focused on the evolutionary relationships and biogeography of the genus Bufo, an evolutionary synthesis of the entire group has not yet emerged. In the present study, almost 4 kb of DNA sequence data from mitochondrial (12S, tRNAVal, and 16S) and nuclear (POMC; Rag-1) genes, and 83 characters from morphology were analysed to infer a phylogeny of South American toads. Phylogenies were reconstructed with parsimony and maximum likelihood and Bayesian model-based methods. The results of the analysis of morphological data support the hypothesis that within Bufo , some skull characters (e.g. frontoparietal width), correlated with the amount of cranial ossification, are prone to homoplasy. Unique and unreversed morphological synapomorphies are presented that can be used to diagnose recognized species groups of South American toads. The results of all phylogenetic analyses support the monophyly of most species groups of South American Bufo . In most DNA-only and combined analyses, the South American (minus the B. guttatus and part of the ' B. spinulosus ' groups), North American, Central American, and African lineages form generally well-supported clades: ((((((((South America) (North America + Central America)) Eurasia) Africa) Eurasia) South America) West Indies) South America). This result confirms and extends prior studies recovering South American Bufo as polyphyletic. The biogeographical results indicate that: (1) The origin of Bufo predates the fragmentation of Gondwana; (2) Central and North American species compose the sister group to a large, 'derived' clade of South American Bufo ; and (3) Eurasian species form the sister group to the New World clade.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 407–452.  相似文献   

19.
We sequenced mitochondrial DNA from four protein-coding genes for 26 taxa to test W. E. Lanyon's hypothesis of intergeneric relationships and character evolution in the Empidonax group of tyrant flycatchers. Three genera in this group (Empidonax, Contopus, and Sayornis) successfully occupy north temperate habitats for breeding, while the remaining genera (Mitrephanes, Cnemotriccus, Aphanotriccus, Lathrotriccus, and Xenotriccus) are restricted to neotropical latitudes. Lanyon hypothesized two major clades in the group based on differences in syringeal morphology and proposed relationships among genera using a combination of morphologic, behavioral, and allozymic characters. The mtDNA data strongly support Lanyon's division of genera into two clades. In addition, the molecular and nonmolecular data sets agree in uniting Aphanotriccus and Lathrotriccus as sister taxa, with Cnemotriccus as basal to these genera. Species of Aphanotriccus, Lathrotriccus, and Cnemotriccus form a clade that exploits a distinctive nesting niche relative to other members of the Empidonax group. Within the second major clade, mtDNA sequences support a reconstruction based on allozymes that places Contopus and Empidonax as sister taxa. This hypothesis contradicts that of Lanyon, who allied Contopus with Mitrephanes on the basis of similarity in foraging mode. Genera in the Empidonax group are members of a larger assemblage that radiated in South America. Occupancy of temperate habitats by certain genera in this group is coincident with their evolution of migratory behavior and with independent diversification in foraging modes that reduces potential competition in sympatry.  相似文献   

20.
Pollinator‐mediated interactions between plants can play an important role for the dynamics of plant communities. Pollination services depend on the abundance and the foraging behaviour of pollinators, which in turn respond to the availability and distribution of floral resources (notably nectar sugar). However, it is still insufficiently understood how the ‘sugar landscapes’ provided by flowering plant communities shape pollinator‐mediated interactions between multiple plant species and across different spatial scales. A better understanding of pollinator‐mediated interactions requires an integrative approach that quantifies different aspects of sugar landscapes and investigates their relative importance for pollinator behaviour and plant reproductive success. In this study, we quantified such sugar landscapes from individual‐based maps of Protea shrub communities in the Cape Floristic Region, South Africa. The 27 study sites of 4 ha each jointly comprise 127 993 individuals of 19 species. We analysed how rates of visitation by key bird pollinators and the seed set of plants respond to different aspects of sugar landscapes: the distribution of nectar sugar amounts, as well as their quality, taxonomic purity and phenology. We found that pollinator visitation rates strongly depended on phenological variation of site‐scale sugar amounts. The seed set of focal plants increased with nectar sugar amounts of conspecific neighbours and with site‐scale sugar amounts. Seed set increased particularly strongly if site‐scale sugar amounts were provided by plants that offer less sugar per inflorescence. These combined effects of the amount, quality, purity and phenological variation of nectar sugar show that nectar sugar is a common interaction currency that determines how multiple plant species interact via shared pollinators. The responses of pollinator‐mediated interactions to different aspects of this interaction currency alter conditions for species coexistence in Protea communities and may cause community‐level Allee effects that promote extinction cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号