首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunological distances of alanine: glyoxylate aminotransferase 1 (serine:pyruvate aminotransferase) in mitochondria or peroxisomes from eight different mammalian liver were determined with rabbit anti-serum against the mitochondrial enzyme of rat liver by microcomplement fixation. Results suggest that heterotopic alanine:glyoxylate aminotransferase 1 are orthologous proteins and their subcellular localization and substrate specificity changed during rapid molecular evolution.  相似文献   

2.
Alanine:glyoxylate aminotransferase has been reported to be present as the apo form in the peroxisomes and as the holo form in the mitochondria in chicken kidney. In contrast, the enzyme was found to be present as the holo form both in the peroxisomes and in the mitochondria in pigeon kidney, suggesting that birds are classified into two groups on the basis of intraperoxisomal form of kidney alanine:glyoxylate aminotransferase. In the kidney, the pigeon peroxisomal holo enzyme did not cross-react immunologically with the chicken peroxisomal apo enzyme.  相似文献   

3.
The distribution of alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2) in spinach (Spinacia oleracea) leaf homogenates was examined by centrifugation in a sucrose density gradient. About 55% of the total homogenate activity was localized in the peroxisomes and the remainder in the soluble fraction. The peroxisomes contained a single form of alanine:2-oxoglutarate aminotransferase, and the soluble fraction contained two forms of the enzyme. Both the peroxisomal enzyme and the soluble predominant form (about 90% of the total soluble activity) were co-purified with glutamate:glyoxylate aminotransferase to homogeneity; it had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration [Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. The evidence indicates that alanine:2-oxoglutarate aminotransferase and glutamate:glyoxylate aminotransferase activities are associated with the same protein. The peroxisomal and soluble enzyme preparations had nearly identical properties, suggesting that the soluble predominant alanine aminotransferase activity is from broken peroxisomes and about 96% of the total homogenate activity is located in peroxisomes.  相似文献   

4.
The subcellular distribution of alanine:glyoxylate aminotransferase in chicken kidney was examined by centrifugation in a sucrose density gradient. The enzyme was found to be present as the apoform in the peroxisomes and as the holoform in the mitochondria. Alanine:glyoxylate aminotransferase in different mammalian kidneys were all present as the holoenzyme in the mitochondrial and soluble fractions.  相似文献   

5.
Alanine:glyoxylate aminotransferase was present as the apoenzyme in the peroxisomes and as the holoenzyme in the mitochondria in chick embryos. The peroxisomal enzyme predominated in the early stage and gradually decreased during embryonic development and disappeared after hatching. In contrast, the mitochondrial enzyme gradually increased and predominated in the later stage of chick embryos. Peroxisomal alanine:glyoxylate aminotransferase in chick embryos was a single peptide with a molecular weight of about 40,000. The enzyme differed from the mitochondrial enzyme in the embryos, and mammalian alanine:glyoxylate aminotransferases 1 (with a molecular weight of about 80,000 with two identical subunits) and 2 (with a molecular weight of about 200,000 with four identical subunits) in molecular weights and immunological properties. Mitochondrial alanine:glyoxylate aminotransferase in chick embryos had an identical molecular weight and immunologically cross-reacted with mammalian mitochondrial alanine:glyoxylate aminotransferase 2. Pyridoxal 5'-phosphate dissociated easily from the peroxisomal enzyme saturated with pyridoxal 5'-phosphate. Hepatic aspartate:2-oxoglutarate aminotransferase and alanine:2-oxoglutarate aminotransferase in chick embryos, and hepatic alanine:glyoxylate aminotransferases in different animal species were all present as the holoenzyme.  相似文献   

6.
Alanine:glyoxylate aminotransferase has been reported to be present as the apo enzyme in the peroxisomes and as the holo enzyme in the mitochondria in chick (white leghorn) embryonic liver. However, surprisingly, birds were found to be classified into two groups on the basis of intraperoxisomal forms of liver alanine:glyoxylate aminotransferase. In the peroxisomes, the enzyme was present as the holo form in group 1 (pigeon, sparrow, Java sparrow, Australian budgerigar, canary, goose, and duck), and as the apo form in group 2 (white leghorn, bantam, pheasant, and Japanese mannikin). In the mitochondria, the enzyme was present as the holo form in both groups. The peroxisomal holo enzyme was purified from pigeon liver, and the peroxisomal apo enzyme from chicken (white leghorn) liver. The pigeon holo enzyme was composed of two identical subunits with a molecular weight of about 45,000, whereas the chicken apo enzyme was a single peptide with the same molecular weight as the subunit of the pigeon enzyme. The peroxisomal holo enzyme of pigeon liver was not immunologically cross-reactive with the peroxisomal apo enzyme of chicken liver, the mitochondrial holo enzymes from pigeon and chicken liver, and mammalian alanine:glyoxylate aminotransferases 1 and 2. The mitochondrial holo enzymes from both pigeon and chicken liver had molecular weights of about 200,000 with four identical subunits and were cross-reactive with mammalian alanine:glyoxylate aminotransferase 2 but not with mammalian alanine:glyoxylate aminotransferase 1.  相似文献   

7.
Immunoblotting of human liver sonicates, after SDS-polyacrylamide gel electrophoresis, demonstrated the presence of a 40 kDa protein, corresponding to the subunit of alanine:glyoxylate aminotransferase, in six controls and three patients with primary hyperoxaluria type 1 (peroxisomal alanine:glyoxylate aminotransferase deficiency). This immunoreactive 40 kDa protein was absent in a further nine patients. Subcellular fractionation of patients' livers showed that the 40 kDa protein, when present, was located mainly in the peroxisomes. In a heterozygote liver, the 40 kDa protein was also mainly peroxisomal and paralleled the distribution of alanine:glyoxylate aminotransferase activity.  相似文献   

8.
The subcellular distribution of asparagine:oxo-acid aminotransferase (EC 2.6.1.14) in rat liver was examined by centrifugation in a sucrose density gradient. About 30% of the homogenate activity after the removal of the nuclear fraction was recovered in the peroxisomes, about 56% in the mitochondria, and the remainder in the soluble fraction from broken peroxisomes. The mitochondrial asparagine aminotransferase had identical immunological properties with the peroxisomal one. Glucagon injection to rats resulted in the increase of its activity in the mitochondria but not in the peroxisomes. Immunological evidence was obtained that the enzyme was identical with alanine:glyoxylate aminotransferase 1 (EC 2.6.1.44) which had been reported to be identical with serine:pyruvate aminotransferase (EC 2.6.1.51) (Noguchi, T. (1987) in Peroxisomes in Biology and Medicine (Fahimi, H. D., and Sies, H., eds) pp. 234-243, Springer-Verlag, Heidelberg). The same results as described above were obtained with mouse liver. All of alanine:glyoxylate aminotransferase 1 in livers of mammals other than rodents, which cross-react with the antibody against rat liver alanine:glyoxylate aminotransferase 1, had no asparagine aminotransferase activity.  相似文献   

9.
10.
L-Serine metabolism in rabbit, dog, and human livers was investigated, focusing on the relative contributions of the three pathways, one initiated by serine dehydratase, another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Under quasi-physiological in vitro conditions (1 mM L-serine and 0.25 mM pyruvate), flux through serine dehydratase accounted for only traces, and that through SPT/AGT substantially contributed no matter whether the enzyme was located in peroxisomes (rabbit and human) or largely in mitochondria (dog). As for flux through serine hydroxymethyltransferase and GCS, the conversion of serine to glycine occurred fairly rapidly, followed by GCS-mediated slow decarboxylation of the accumulated glycine. The flux through GCS was relatively high in the dog and low in the rabbit, and only in the dog was it comparable with that through SPT/AGT. An in vivo experiment with L-[3-3H,14C]serine as the substrate indicated that in rabbit liver, gluconeogenesis from L-serine proceeds mainly via hydroxypyruvate. Because an important role in the conversion of glyoxylate to glycine has been assigned to peroxisomal SPT/AGT from the studies on primary hyperoxaluria type 1, these results suggest that SPT/AGT in this organelle plays dual roles in the metabolism of glyoxylate and serine.  相似文献   

11.
Although human alanine:glyoxylate aminotransferase (AGT) is imported into peroxisomes by a Pex5p-dependent pathway, the properties of its C-terminal tripeptide (KKL) are unlike those of any other type 1 peroxisomal targeting sequence (PTS1). We have previously suggested that AGT might possess ancillary targeting information that enables its unusual PTS1 to work. In this study, we have attempted to locate this information and to determine whether or not it is a characteristic of all vertebrate AGTs. Using the two-hybrid system, we show that human AGT interacts with human Pex5p in mammalian cells, but not yeast cells. Using (immuno)fluorescence microscopic analysis of the distribution of various constructs expressed in COS cells, we show the following. 1) The putative ancillary peroxisomal targeting information (PTS1A) in human AGT is located entirely within the smaller C-terminal structural domain of 110 amino acids, with the sequence between Val-324 and Ile-345 being the most likely candidate region. 2) The PTS1A is present in all mammalian AGTs studied (human, rat, guinea pig, rabbit, and cat), but not amphibian AGT (Xenopus). 3) The PTS1A is necessary for peroxisomal import of human, rabbit, and cat AGTs, but not rat and guinea pig AGTs. We speculate that the internal PTS1A of human AGT works in concert with the C-terminal PTS1 by interacting with Pex5p indirectly with the aid of a yet-to-be-identified mammal-specific adaptor molecule. This interaction might reshape the tetratricopeptide repeat domain allosterically, enabling it to accept KKL as a functional PTS1.  相似文献   

12.
Rat liver soluble fraction contained 3 forms of alanine: glyoxylate aminotransferase. One with a pI of 5.2 and an Mr of approx. 110,000 was found to be identical with cytosolic alanine:2-oxoglutarate aminotransferase. The pI 6.0 enzyme with an Mr of approx. 220,000 was suggested to be from broken mitochondrial alanine:glyoxylate aminotransferase 2 and the pI 8.0 enzyme with an Mr of approx. 80,000 enzyme from broken peroxisomal and mitochondrial alanine:glyoxylate aminotransferase 1. These results suggest that the cytosolic alanine: glyoxylate aminotransferase activity is due to cytosolic alanine: 2-oxoglutarate aminotransferase.  相似文献   

13.
This paper concerns an enzymological investigation into a putative canine analogue of the human autosomal recessive disease primary hyperoxaluria type 1 (alanine:glyoxylate/serine:pyruvate aminotransferase deficiency). The liver and kidney activities of alanine:glyoxylate aminotransferase and serine:pyruvate aminotransferase in two Tibetan Spaniel pups with familial oxalate nephropathy were markedly reduced when compared with a variety of controls. There were no obvious deficiencies in a number of other enzymes including D-glycerate dehydrogenase/glyoxylate reductase which have been shown previously to be deficient in primary hyperoxaluria type 2. Immunoblotting of liver and kidney homogenates from oxalotic dogs also demonstrated a severe deficiency of immunoreactive alanine:glyoxylate aminotransferase. The developmental expression of alanine:glyoxylate/serine:pyruvate aminotransferase was studied in the livers and kidneys of control dogs. In the liver, enzyme activity and immunoreactive protein were virtually undetectable at 1 day old, but then increased to reach a plateau between 4 and 12 weeks. During this period the activity was similar to that found in normal human liver. The enzyme activities and the levels of immunoreactive protein in the kidneys were more erratic, but they appeared to increase up to 8 weeks and then decrease, so that by 36 weeks the levels were similar to those found at 1 day. The data presented in this paper suggest that these oxalotic dogs have a genetic condition that is analogous, at least enzymologically, to the human disease primary hyperoxaluria type 1.  相似文献   

14.
This paper concerns an enzymological investigation into a putative canine canalogue of the human autosomal recesive disease primary hyperoxaluria type 1 (alanine:glyoxylate / serine:pyruvate aminotransferase deficiency). The liver and kidney activities of alanine:glyoxylate aminotransferase and seribe:pyruvate aminotransferase in two Tibetan Spaniel pups with familial oxalate nephripathy were markedly reduced when compared with a variety of controls. There were no obvious deficiencies in a number of other enzymes including d-glycerate dehydrogenese / glyoxylate reductase which have been shown previously to be deficient in primary hyperoxaluria type 2. Immunoblotting of liver and kidney homogenates from oxalotic dogs also demonstrated a severe deficiency of immunoreactive alanine:glyoxylate aminotransferase. The developmental expression of alanine:glyoxylate / serine:pyruvate aminotransferase was studied in the livers and kidneys of control dogs. In the liver, enzyme activity and immunoreactive protein were virtually undetectable at 1 day old, but then increased to reach a plateau between 4 and 12 weeks. During this period the activity was similar to that found in normal humanb liver. The enzyme activities and the levels of immunoreactive protein in the kidneys were more erratic, but they appeared to increase up to 8 weeks and then decrease, so that by 36 weeks the levels were similar to those found at 1 day. The data presented in this paper suggest that these oxalotic dogs have a genetic condition that is anlogous, at least enzymologically, to the human disease primary hyperoxaluria type 1.  相似文献   

15.
Pyruvate (glyoxylate) aminotransferase from rat liver peroxisomes was highly purified and characterized. The enzyme preparation has a mol.wt. of approx. 80,000 with two identical subunits, and isoelectric point of 8.0 and a pH optimum between 8.0 and 8.5. The enzyme catalysed transamination between a number of L-amino acids and pyruvate or glyoxylate. The effective amino acceptors were pyruvate, phenylpyruvate and glyoxylate with serine, and glyoxylate and phenylpyruvate with alanine as amino donor. These properties and kinetic parameters of the enzyme are remarkably similar to those previously described for mitochondrial alanine-glyoxylate aminotransferase isoenzyme 1 from glucagon-injected rat liver [Noguchi, Okuno, Takada, Minatogawa, Okai & Kido (1978, Biochem. J. 169, 113-122].  相似文献   

16.
Glutamate:glyoxylate aminotransferase had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration (Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. Glutamate:glyoxylate aminotransferase activity was already present in the etiolated cotyledons of cucumber (Cucumis sativus) seedlings, and increased during greening. The enzyme was present only in the cytosol of the etiolated cotyledons and appeared in the peroxisomes during greening. The enzyme was purified to homogeneity from the cytosol of the etiolated cotyledons and from the peroxisomes of the green cotyledons of cucumber seedlings. The two enzyme preparations had nearly identical enzymic and physical properties. On the basis of these findings, roles of glutamate:glyoxylate aminotransferase in the glycollate pathway in photorespiration, and the mechanism of its appearance in the peroxisomes during greening, are discussed.  相似文献   

17.
Dimethylarginine:pyruvate aminotransferase, which plays a role in the metabolism of dimethylarginines, has been purified to homogeneity from rat kidney. The enzyme has a molecular weight of approximately 200,000 and an isoelectric point at about pH 6.3. The enzyme consists of four similar subunits having a molecular weight of about 50,000. The enzyme catalyzes the effective transaminations of guanidino-N methylated L-arginines (e.g. NG,NG-dimethyl-L-arginine, NG,N'G-dimethyl-L-arginine and NG-monomethyl-L-arginine) and the alpha-amino group of L-ornithine to pyruvate or glyoxylate. The enzyme was always accompanied by the known alanine:glyoxylate amino-transferase activity with the ratios of their specific activities remaining constant during the purification steps. The physicochemical and immunological properties of the purified enzyme were shown to be identical with those of the isozyme of alanine:glyoxylate aminotransferase (EC 2.6.1.44), designated as alanine:glyoxylate aminotransferase 2 (Noguchi, T. (1987) in Peroxisomes in Biology and Medicine (Fahimi, H. D., and Sies, H., eds) pp. 234-243, Springer-Verlag, Heidelberg). The distribution profiles in tissues and the negative response to glucagon treatment further supported the identity of the two enzymes. The present data show that alanine:glyoxilate aminotransferase 2 functions in dimethylarginine metabolism in vivo in rats.  相似文献   

18.
The pyridoxal-phosphate (PLP)-dependent enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria in patients with the hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) due to the synergistic interaction between a common Pro(11)Leu polymorphism and a PH1-specific Gly(170)Arg mutation. The kinetic partitioning of newly synthesised AGT between peroxisomes and mitochondria is determined by the combined effects of (1) the generation of cryptic mitochondrial targeting information, and (2) the inhibition of AGT dimerization. The crystal structure of AGT has recently been solved, allowing the effects of the various polymorphisms and mutations to be rationalised in terms of AGT's three-dimensional conformation. Procedures that increase dimer stability and/or increase the rate of dimer formation have potential in the formulation of novel strategies to treat this otherwise intractable life-threatening disease.  相似文献   

19.
Abstract: Glyoxylate aminotransferase activity with l -glutamate, l -glutamine and l -alanine as substrates, has been estimated in rat, guinea pig and goat retinae. Enhanced enzyme activity was found in the presence of Triton X-100. The presence of significant aminotransferase activity raises a possibility of glyoxylate as a precursor of glycine in vertebrate retina.  相似文献   

20.
Primary hyperoxaluria type 1 (PH1) is an inherited disorder of glyoxylate metabolism caused by a deficiency of the hepatic peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT; EC 2.6.1.44) [FEBS Lett (1986) 201:20]. The aim of the present study was to investigate the intracellular distribution of immunoreactive AGT protein, using protein A-gold immunocytochemistry, in normal human liver and in livers of PH1 patients with (CRM+) or without (CRM-) immunologically crossreacting enzyme protein. In all CRM+ individuals, which included three controls, a PH1 heterozygote and a PH1 homozygote immunoreactive AGT protein was confined to peroxisomes, where it was randomly dispersed throughout the peroxisomal matrix with no obvious association with the peroxisomal membrane. No AGT protein could be detected in the peroxisomes or other cytoplasmic compartments in the livers of CRM- PH1 patients (homozygotes). The peroxisomal labeling density in the CRM+ PH1 patient, who was completely deficient in AGT enzyme activity, was similar to that of the controls. In addition, in the PH1 heterozygote, who had one third normal AGT enzyme activity, peroxisomal labeling density was reduced to 50% of normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号