首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limonene enantiomers and substrate analogs, including specifically fluorinated derivatives, were utilized to probe active site interactions with recombinant (-)-(4S)-limonene-3-hydroxylase (CYP71D13) and (-)-(4S)-limonene-6-hydroxylase (CYP71D18) from mint (Mentha) species. (-)-(4S)-Limonene is hydroxylated by both enzymes at the designated C3- and C6-allylic positions, with strict regio- and stereospecificity and without detectable allylic rearrangement, to give the corresponding products (-)-trans-isopiperitenol and (-)-trans-carveol. CYP71D13-catalyzed hydroxylation of (+)-(4R)-limonene also yields the corresponding trans-3-hydroxylated product ((+)-transisopiperitenol); however, the C6-hydroxylase converts (+)-(4R)-limonene to a completely different product profile dominated by the enantiopure cis-6-hydroxylated product (+)-cis-carveol along with several minor products, including both enantiomers of the trans-6-hydroxylated product ((+/-)-trans-carveol), indicating allylic rearrangement during catalysis. These results demonstrate that the regiospecificity and facial stereochemistry of oxygen insertion is dictated by the absolute configuration of the substrate. Fluorinated limonene analogs are also tightly bound by both enzymes and hydroxylated at the topologically congruent positions in spite of the polarizing effect of the fluorine atom on substrate reactivity. This strict retention of oxygenation geometry suggests a rigid substrate orientation imposed by multiple hydrophobic active site contacts. Structurally simplified substrate analogs are hydroxylated at slower rates and with substantial loss of regiospecificity, consistent with a loss of active site complementarity. Evaluation of the product profiles generated allowed assessment of the role of hydrophobic contacts in orienting the substrate relative to the activated oxygen species.  相似文献   

2.
CYP73 enzymes are highly conserved cytochromes P450 in plant species that catalyse the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. A CYP73A1 homology model based on P450 experimentally solved structures was used to identify active site residues likely to govern substrate binding and regio-specific catalysis. The functional significance of these residues was assessed using site-directed mutagenesis. Active site modelling predicted that N302 and I371 form a hydrogen bond and hydrophobic contacts with the anionic site or aromatic ring of the substrate. Modification of these residues led to a drastic decrease in substrate binding and metabolism without major perturbation of protein structure. Changes to residue K484, which is located too far in the active site model to form a direct contact with cinnamic acid in the oxidized enzyme, did not influence initial substrate binding. However, the K484M substitution led to a 50% loss in catalytic activity. K484 may affect positioning of the substrate in the reduced enzyme during the catalytic cycle, or product release. Catalytic analysis of the mutants with structural analogues of cinnamic acid, in particular indole-2-carboxylic acid that can be hydroxylated with different regioselectivities, supports the involvement of N302, I371 and K484 in substrate docking and orientation.  相似文献   

3.
Homology modeling and substrate binding study of human CYP4A11 enzyme   总被引:3,自引:0,他引:3  
Chang YT  Loew GH 《Proteins》1999,34(3):403-415
Although both bacterial CYP102 (P450BM3) and mammalian CYP4A isozymes share a common function as fatty acid hydroxylases, distinctly different preferred sites of oxidation are observed with the CYP102 performing the usual non-terminal hydroxylation or epoxidation and the CYP4A enzymes performing the unusual and enigmatic terminal hydroxylation. The origin of this unique product specificity in human CYP4A11 has been explored in this work, focusing on possible differences in the binding site architecture of the two isozymes as the cause. To this end, 3D model structures of the human CYP4A11 enzyme were built and compared to the X-ray structure of CYP102. The substrate-binding channel identified in CYP4A11 was found to have a much more sterically restricted active site than that in CYP102 that could cause limited access of long-chain fatty acid to the ferryl oxygen leading to the preferred omega-hydroxylation. Results of docking of a common substrate, lauric acid, into the binding site of both CYP4A11 and CYP102 and molecular dynamics simulations provided additional support for this hypothesis. Specifically, in the CYP4A11-lauric acid simulations, the omega hydrogens were closest to the ferryl oxygen most of the time. By contrast, in the CYP102-lauric acid complex, the substrate could penetrate further into the active site providing access of the non-terminal (omega-1, omega-2) positions to the ferryl oxygen. These results, taken together, have elucidated the origin of the unusual product specificity of CYP4A11 and illustrated the central role of binding site architecture in subtle modulation of function.  相似文献   

4.
Cytochromes P450 in phenolic metabolism   总被引:2,自引:0,他引:2  
Three independent cytochrome P450 enzyme families catalyze the three rate-limiting hydroxylation steps in the phenylpropanoid pathway leading to the biosynthesis of lignin and numerous other phenolic compounds in plants. Their characterization at the molecular and enzymatic level has revealed an unexpected complexity of phenolic metabolism as the major route involves shikimate/quinate esters and alcohol/aldehyde intermediates. Engineering expression of CYP73s (encoding cinnamate 4-hydroxylase), CYP98s (encoding 4-coumaroylshikimate 3′-hydroxylase) or CYP84s (encoding coniferaldehyde 5-hydroxylase) leads to modified lignin and seed phenolic composition. In particular CYP73s and CYP98s also play essential roles in plant growth and development, while CYP84 constitutes a check-point for the synthesis of syringyl lignin and sinapate esters. Although recent data shed new light on the main path for lignin synthesis, they also raised new questions. Mutants and engineered plants revealed the existence of (an) alternative pathway(s), which most likely involve(s) different precursors and oxygenases. On the other hand, phylogenetic analysis of plant genomes show the existence of P450 gene duplications in each family, which may have led to the acquisition of novel or additional physiological functions in planta. In addition to the main lignin pathway, P450s contribute to the biosynthesis of many bioactive phenolic derivatives, with potential applications in medicine and plant defense, including lignans, phenylethanoids, benzoic acids, xanthones or quinoid compounds. A very small proportion of these P450s have been characterized so far, and rarely at a molecular level. The possible involvement of P450s in salicylic acid is discussed.  相似文献   

5.
6.
Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.  相似文献   

7.
Peptidylglycine α-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the final reaction in the maturation of α-amidated peptide hormones. Peptidylglycine α-hydroxylating monooxygenase (PHM) is the PAM domain responsible for the copper-, ascorbate- and O2-dependent hydroxylation of a glycine-extended peptide. Peptidylamidoglycolate lyase is the PAM domain responsible for the Zn(II)-dependent dealkylation of the α-hydroxyglycine-containing precursor to the final α-amidated peptide. We report herein that cinnamic acid and cinnamic acid analogs are inhibitors or inactivators of PHM. The inactivation chemistry exhibited by the cinnamates exhibits all the attributes of a suicide-substrate. However, we find no evidence for the formation of an irreversible linkage between cinnamate and PHM in the inactivated enzyme. Our data support the reversible formation of a Michael adduct between an active site nucleophile and cinnamate that leads to inactive enzyme. Our data are of significance given that cinnamates are found in foods, perfumes, cosmetics and pharmaceuticals.  相似文献   

8.
The plant growth-retardant uniconazole (UNI), a triazole inhibitor of gibberellin biosynthetic enzyme (CYP701A), inhibits multiple P450 enzymes including ABA 8′-hydroxylase (CYP707A), a key enzyme in ABA catabolism. Azole P450 inhibitors bind to a P450 active site by both coordinating to the heme-iron atom via sp2 nitrogen and interacting with surrounding protein residues through a lipophilic region. We hypothesized that poor selectivity of UNI may result from adopting a distinct conformation and orientation for different active sites. Based on this hypothesis, we designed and synthesized novel UNI analogs with a disubstituted azole ring (DSI). These analogs were expected to have higher selectivity than UNI because the added functional group may interact with the active site to restrict orientation of the molecule in the active site. DSI-505ME and DSI-505MZ, which have an imidazolyl group with a methyl 5-acrylate, strongly inhibited recombinant CYP707A3, with no growth-retardant effect.  相似文献   

9.
Cytochrome P450 46A1 (CYP46A1) initiates the major pathway of cholesterol elimination from the brain and thereby controls cholesterol turnover in this organ. We determined x-ray crystal structures of CYP46A1 in complex with four structurally distinct pharmaceuticals; antidepressant tranylcypromine (2.15 Å), anticonvulsant thioperamide (1.65 Å), antifungal voriconazole (2.35 Å), and antifungal clotrimazole (2.50 Å). All four drugs are nitrogen-containing compounds that have nanomolar affinity for CYP46A1 in vitro yet differ in size, shape, hydrophobicity, and type of the nitrogen ligand. Structures of the co-complexes demonstrate that each drug binds in a single orientation to the active site with tranylcypromine, thioperamide, and voriconazole coordinating the heme iron via their nitrogen atoms and clotrimazole being at a 4 Å distance from the heme iron. We show here that clotrimazole is also a substrate for CYP46A1. High affinity for CYP46A1 is determined by a set of specific interactions, some of which were further investigated by solution studies using structural analogs of the drugs and the T306A CYP46A1 mutant. Collectively, our results reveal how diverse inhibitors can be accommodated in the CYP46A1 active site and provide an explanation for the observed differences in the drug-induced spectral response. Co-complexes with tranylcypromine, thioperamide, and voriconazole represent the first structural characterization of the drug binding to a P450 enzyme.  相似文献   

10.
Among 11 isoforms of the human cytochrome P450 enzymes metabolizing xenobiotics, CYP 1A1 and CYP 1A2 were major P450 species in the metabolism of the herbicides chlortoluron and atrazine in a yeast expression system. CYP1A2 was more active in the metabolism of both herbicides than CYP1A1. The fused enzymes of CYP1A1 and CYP1A2 with yeast NADPH-cytochrome P450 oxidoreductase were functionally active in the microsomal fraction of the yeast Saccharomyces cerevisiae and showed increased specific activity towards 7-ethoxyresorufin as compared to CYP1A1 and CYP1A2 alone. Then, both fused enzymes were each expressed in the microsomes of tobacco (Nicotiana tabacum cv. Samsun NN) plants. The transgenic plants expressing the CYP1A2 fusion enzyme had higher resistance to the herbicide chlortoluron than the plants expressing the CYP1A1 fusion enzyme did. The transgenic plants expressing the CYP1A2 fused enzyme metabolized chlortoluron to a larger extent to its non-phytotoxic metabolites through N-demethylation and ring-methyl hydroxylation as compared to the plants expressing the CYP1A1 fused enzyme. Thus, the possibility of increasing the herbicide resistance in the transgenic plants by the selection of P450 species and the fusion with P450 reductase is discussed.  相似文献   

11.
12.
Understanding regulation of phenolic metabolism underpins attempts to engineer plants for diverse properties such as increased levels of antioxidant flavonoids for dietary improvements or reduction of lignin for improvements to fibre resources for industrial use. Previous attempts to alter phenolic metabolism at the level of the second enzyme of the pathway, cinnamate 4-hydroxylase have employed antisense expression of heterologous sequences in tobacco. The present study describes the consequences of homologous sense expression of tomato CYP73A24 on the lignin content of stems and the flavonoid content of fruits. An extensive number of lines were produced and displayed four developmental variants besides a normal phenotype. These aberrant phenotypes were classified as dwarf plants, plants with distorted (curly) leaves, plants with long internodes and plants with thickened waxy leaves. Nevertheless, some of the lines showed the desired increase in the level of rutin and naringenin in fruit in a normal phenotype background. However this could not be correlated directly to increased levels of PAL and C4H expression as other lines showed less accumulation, although all lines tested showed increases in leaf chlorogenic acid which is typical of Solanaceous plants when engineered in the phenylpropanoid pathway. Almost all transgenic lines analysed showed a considerable reduction in stem lignin and in the lines that were specifically examined, this was correlated with partial sense suppression of C4H. Although not the primary purpose of the study, these reductions in lignin were amongst the greatest seen in plants modified for lignin by manipulation of structural genes. The lignin showed higher syringyl to coniferyl monomeric content contrary to that previously seen in tobacco engineered for downregulation of cinnamate 4-hydroxylase. These outcomes are consistent with placing CYP73A24 more in the lignin pathway and having a role in flux control, while more complex regulatory processes are likely to be involved in flavonoid and chlorogenic acid accumulation.  相似文献   

13.
Cytochrome P450cam (CYP101A1) catalyzes the stereospecific 5-exo hydroxylation of d-camphor by molecular oxygen. Previously, residual dipolar couplings measured for backbone amide 1H–15N correlations in both substrate-free and bound forms of CYP101A1 were used as restraints in soft annealing molecular dynamic simulations in order to identify average conformations of the enzyme with and without substrate bound. Multiple substrate-dependent conformational changes remote from the enzyme active site were identified, and site-directed mutagenesis and activity assays confirmed the importance of these changes in substrate recognition. The current work makes use of perturbation response scanning (PRS) and umbrella sampling molecular dynamic of the residual dipolar coupling-derived CYP101A1 structures to probe the roles of remote structural features in enforcing the regio- and stereospecific nature of the hydroxylation reaction catalyzed by CYP101A1. An improper dihedral angle Ψ was defined and used to maintain substrate orientation in the CYP101A1 active site, and it was observed that different values of Ψ result in different PRS response maps. Umbrella sampling methods show that the free energy of the system is sensitive to Ψ, and bound substrate forms an important mechanical link in the transmission of mechanical coupling through the enzyme structure. Finally, a qualitative approach to interpreting PRS maps in terms of the roles of secondary structural features is proposed.  相似文献   

14.
Wüst M  Croteau RB 《Biochemistry》2002,41(6):1820-1827
The regiochemistry and facial stereochemistry of the limonene-6-hydroxylase- (CYP71D18-) mediated hydroxylation of the monoterpene olefin limonene are determined by the absolute configuration of the substrate. (-)-(4S)-Limonene is hydroxylated at the C6 allylic position to give (-)-trans-carveol as the only product, whereas (+)-(4R)-limonene yields multiple hydroxylation products with (+)-cis-carveol predominating. Specifically deuterated limonene enantiomers were prepared to investigate the net stereospecificity of hydroxylation at C6 and the mechanism of multiple product formation. The results of isotopically sensitive branching experiments of competitive and noncompetitive design were consistent with a nondissociative kinetic mechanism, indicating that (4R)-limonene has sufficient freedom of motion within the active site of CYP71D18 to allow formation of either the trans-3- or cis-6-hydroxylated product. However, the kinetic isotope effects resulting from deuterium abstraction were significantly smaller than expected for an allylic hydroxylation, and they did not approach the intrinsic isotope effect. (4S)-Limonene is oxygenated with almost complete stereospecificity for hydrogen abstraction from the trans-6-position, demonstrating rigid orientation during hydrogen abstraction and hydroxyl delivery. The oxygenation of (4R)-limonene leading to the formation of (+/-)-trans-carveol is accompanied by considerable allylic rearrangement and stereochemical scrambling, whereas the formation of (+)-cis-carveol proceeds without allylic rearrangement and with nearly complete stereospecificity for hydrogen abstraction from the cis-6-position. These results demonstrate that a single cytochrome P450 enzyme catalyzes the hydroxylation of small antipodal substrates with distinct stereochemistries and reveal that substrate-dependent positional motion of the intermediate carbon radical (and, therefore, hydroxylation stereospecificity) is determined by active-site binding complementarity. Thus, epimerization and allylic rearrangement are not inherent features of these reactions but occur when loss of active-site complementarity allows increased substrate mobility.  相似文献   

15.
The inhibition of CYP3A4-mediated oxidation of triazolam and testosterone was assessed in the presence of a selection of known CYP3A4 substrates and inhibitors. Under experimental conditions where the Michaelis-Menten model predicts substrate-independent inhibition ([S] = K(m)), results yielded substrate-dependent inhibition. Moreover, when the same experimental design was extended to a group of structurally similar flavonoids it was observed that flavanone, flavone, 3-hydroxyflavone, and 6-hydroxyflavone (10 microM) activated triazolam metabolism, but inhibited testosterone hydroxylation. In additional studies, residual CYP3A4 activity toward testosterone and triazolam hydroxylation was measured after pretreatment with the CYP3A4 mechanism based inhibitor, midazolam. After midazolam preincubation, CYP3A4 6 beta-hydroxylase activity was reduced by 47% while, in contrast, triazolam hydroxylation was reduced by 75%. These results provide physical evidence, which supports the hypothesis that the active site of CYP3A4 contains spatially distinct substrate-binding domains within the enzyme active site.  相似文献   

16.
CYP105A1 from Streptomyces griseolus has the capability of converting vitamin D 3 (VD 3) to its active form, 1alpha,25-dihydroxyvitamin D 3 (1alpha,25(OH) 2D 3) by a two-step hydroxylation reaction. Our previous structural study has suggested that Arg73 and Arg84 are key residues for the activities of CYP105A1. In this study, we prepared a series of single and double mutants by site-directed mutagenesis focusing on these two residues of CYP105A1 to obtain the hyperactive vitamin D 3 hydroxylase. R84F mutation altered the substrate specificity that gives preference to the 1alpha-hydroxylation of 25-hydroxyvitamin D 3 over the 25-hydroxylation of 1alpha-hydroxyvitamin D 3, opposite to the wild type and other mutants. The double mutant R73V/R84A exhibited 435- and 110-fold higher k cat/ K m values for the 25-hydroxylation of 1alpha-hydroxyvitamin D 3 and 1alpha-hydroxylation of 25-hydroxyvitamin D 3, respectively, compared with the wild-type enzyme. These values notably exceed those of CYP27A1, which is the physiologically essential VD 3 hydroxylase. Thus, we successfully generated useful enzymes of altered substrate preference and hyperactivity. Structural and kinetic analyses of single and double mutants suggest that the amino acid residues at positions 73 and 84 affect the location and conformation of the bound compound in the reaction site and those in the transient binding site, respectively.  相似文献   

17.
Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates > 70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 angstroms for an indazole complex and 2.6 angstroms for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr303 within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe478 aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved 216QXXNN220 residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed omega-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.  相似文献   

18.
19.
20.
CYP105A1 from Streptomyces griseolus belongs to a widespread family of soluble prokaryotic cytochromes P450. For in vitro studies we established an electron transfer system, consisting of the ferredoxin Etp1(fd) and the ferredoxin reductase Arh1 from the fission yeast Schizosaccharomyces pombe. We investigated the metabolism of glibenclamide and glimepiride, hypoglycemic drugs of sulfonylurea type, and determined corresponding in vitro kinetic parameters. The resulting 3-cyclohexyl-hydroxylation activity towards glibenclamide and glimepiride was demonstrated by NMR analysis. Furthermore, the main product of glibenclamide, cis-3-hydroxy-glibenclamide is identical with the phase-1-metabolite of this drug in human. The orientation of glimepiride and glibenclamide in the active site of the enzyme is shown by a computational docking model. For high scale production of sulfonylurea derivatives, we designed whole-cell biocatalysts based on Bacillus megaterium MS941. Surprisingly, the system expressing only CYP105A1 showed a similar activity towards hydroxylation of glimepiride and glibenclamide compared to the system expressing additionally the redox partners, Arh1 and Etp1(fd)(516-618), indicating that the host strain provides a functional endogenous electron transfer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号