首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The operator-binding domain of phage lambda repressor provides a model for DNA recognition by the helix-turn-helix (HTH) motif. In the wild-type protein, dimerization is mediated by hydrophobic packing (of the dyad-related helix 5), which serves as an indirect determinant of operator affinity. The mutant repressor, Tyr88----Cys, forms an intersubunit disulfide linkage and exhibits enhancement of both structural stability and operator affinity. Yet the dimer-specific operator affinity of the mutant is 10-fold weaker than that of the wild-type (noncovalent) dimer, suggesting nonlocal effects of the intersubunit disulfide bond on HTH recognition (Sauer et al., 1986). To explore such nonlocal effects, we describe laser Raman studies of the Cys88 mutant repressor and its interaction with operator sites OL1 and OR3. The following results have been obtained: (i) Wild-type and mutant dimers exhibit similar secondary structures, indicated by quantitative comparison of Raman amide I and amide III bands. (ii) The engineered disulfide of the mutant lacks rigorous symmetry; we observe mainly the gauche/gauche/trans CC-S-S-CC rotamer. (iii) Remarkably, distinctive local and nonlocal differences are observed in the mechanisms of DNA recognition by wild-type and mutant repressors. These differences involve specific hydrogen-bonding interactions between the protein and DNA, including guanine N7 sites in the major groove of DNA, and alterations in DNA phosphodiester conformation induced by protein binding. We analyze these differences in relation to crystal structures of the wild-type dimer with and without bound DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The nucleotide sequence of the operators of ultravirulent mutants of lambda, able to grow on host cells with elevated repressor levels, was determined. It appears that ultravirulence in lambda requires multiple mutational events at the operator sequences. OL1, OL2, and OL3 operator sites are the target of mutational changes in ultravirulent phages indicating that these sites participate in vivo in repression of the PL promoter. No changes were found in the OR3 sequence, in contrast there is a mutation in OR2 and two mutations in OR1, in both lambda 668 and lambda 2668 phages. This mutated operator structure accounts for the constitutive expression of their PR promoter either in cells overproducing the lambda repressor or in cells overproducing the cro gene product. A model of the structure of the lambda operator site is proposed. The nucleotide sequence in each site can be divided into two functionally different subsets, one of which is recognized by the repressor while the other stabilizes the repressor-operator interaction.  相似文献   

3.
Kinetic studies on Cro repressor-operator DNA interaction   总被引:14,自引:0,他引:14  
The six operators of phage lambda and their consensus sequence were synthesized as 21 base-pair DNAs and their interactions with Cro repressor were studied using a filter binding assay. The measured equilibrium dissociation constants suggest that Cro has the highest affinity to the consensus operator (KD = 1.2 X 10(-12) M) and then the OR3 operator (KD = 2.0 X 10(-12) M), after that the affinity becomes lower in the following order: OR1, OL1, OL2, OL3, OR2. The competition experiments show that Cro forms the most stable complex with the consensus operator (t1/2 = 150 min), which is followed by the complex with OR3 (t1/2 = 70 min), OR1, OL1, OL2, OL3 and OR2. The association rate constants (ka) were also measured. They are approximately the same (2 X 10(8) to 4 X 10(8) m-1 s-1) for the consensus, OR3, OR2 and OR1 operators. These experiments have thus shown that the sequence difference in the operator affects the dissociation (KD and kd) but not the association (ka) process. The operators' binding strengths relative to OR1 are 14 (for consensus operator), 7.6 (OR3), 0.73 (OL1), 0.42 (OL2), 0.16 (OL3) and 0.1 (OR2). Seven different lengths of OR-containing DNA fragments were prepared. Measurement of kinetic parameters shows that the affinity of Cro to operator DNA (measured by KD) is essentially constant and independent of the DNA length, while the association and dissociation rate constants increase as the DNA length increases. This is consistent with the idea that Cro locates and leaves its operator via a two-step mechanism. It appears that Cro binds first at an arbitrary site on DNA, then is transferred to its operator site by a facilitated mechanism. The process is reversed when Cro dissociates from the operator. Most of our data fit to the theoretical expression formulated by Berg, Winter & von Hippel for the sliding mechanism. We conclude that Cro slides along the DNA to locate and leave the operator.  相似文献   

4.
The bacteriophage 434 repressor distinguishes between its six naturally occurring binding sites using indirect readout. In indirect readout, sequence-dependent differences in the structure and flexibility of non-contacted bases in a protein's DNA-binding site modulate the affinity of DNA for protein. The conformation and flexibility of a DNA sequence can be influenced by the interaction of the DNA bases or backbone with solution components. We examined the effect of changing the cation-type present in solution on the stability and structure of 434 repressor complexes with wild-type and mutant OR1 and OR3, binding sites that differ in their contacted and non-contacted base sequences. We find that the affinity of repressor for OR1, but not for OR3, depends remarkably on the type and concentration of monovalent cation. Moreover, the formation of a stable, specific repressor-OR1 complex requires the presence of monovalent cations; however, repressor-OR3 complex formation has no such requirement. Changing monovalent cation type alters the ability of repressor to protect OR1, but not OR3, from *OH radical cleavage. Altering the relative length of the poly(dA) x poly(dT) tract in the non-contacted regions of the OR1 and OR3 can reverse the cation sensitivity of repressor's affinities for these two sites. Taken together these findings show that cation-dependent alterations in DNA structure underlies indirect readout of DNA sequence by 434 repressor and perhaps other proteins.  相似文献   

5.
6.
The relative orientations of the 3 helices in the DNA-binding domain ('headpiece') of lac repressor have been determined using distance constraints obtained from 2-dimensional 1H nuclear Overhauser enhancement spectra. The relative orientations of its helices is similar to that of the central 3 helices in the DNA-binding domain of the lambda repressor of the bacteriophage lambda.  相似文献   

7.
The binding of galactose-specific lectins from Erythrina indica (EIL), Erythrina arborescens (EAL), Ricinus communis (agglutinin; RCA-I), Abrus precatorius (agglutinin; APA), and Bandeiraea simplicifolia (lectin I; BSL-I) to fluoro-, deoxy-, and thiogalactoses were studied in order to determine the strength of hydrogen bonds between the hydroxyl groups of galactose and the binding sites of the proteins. The results have allowed insight into the nature of the donor/acceptor groups in the lectins that are involved in hydrogen bonding with the sugar. The data indicate that the C-2 hydroxyl group of galactose is involved in weak interactions as a hydrogen-bond acceptor with uncharged groups of EIL and EAL. With RCA-I, the C-2 hydroxyl group forms two weak hydrogen bonds in the capacity of a hydrogen-bond acceptor and a donor. On the other hand, there is a strong hydrogen bond between the C-2 hydroxyl group of galactose, which acts as a donor, and a charged group on BSL-I. The C-2 hydroxyl group of the sugar is also a hydrogen-bond donor to APA. The lectins are involved in strong hydrogen bonds through charged groups with the C-3 and C-4 hydroxyl groups of galactose, with the latter serving as hydrogen-bond donors. The C-6 hydroxyl group of the sugar is weakly hydrogen bonded with neutral groups of EIL, EAL, and APA. With BSL-I, however, a strong hydrogen bond is formed at this position with a charged group of the lectin. The C-6 hydroxyl groups is a hydrogen-bond acceptor for EIL and EAL, a hydrogen-bond donor for APA and BSL-I, and appears not to be involved in binding to RCA-I. The data with the thiosugars indicate the involvement of the C-1 hydroxyl group of galactose in binding to EIL, EAL, and BSL-I, but not to RCA-I and APA. We have also performed a similar analysis of the binding data of fluoro- and deoxysugars to concanavalin A [Poretz, R. D. and Goldstein, I. J. (1970) Biochemistry 9, 2890-2896]. This has allowed comparison of the donor/acceptor properties and free energies of hydrogen bonding of the hydroxyl groups of methyl alpha-D-mannopyranoside to concanavalin A with the results in the present study. On the basis of this analysis, new assignments are suggested for amino acid residues of concanavalin A [corrected] that may be involved in hydrogen bonding to the sugar.  相似文献   

8.
4,4'-bis(1-anilino-8-naphthalenesulfonic acid (Bis-ANS), an environment-sensitive fluorescent probe for hydrophobic region of proteins, binds specifically to the C-terminal domain of lambda repressor. The binding is characterized by positive cooperativity, the magnitude of which is dependent on protein concentration in the concentration range where dimeric repressor aggregates to a tetramer. In this range, positive cooperativity becomes more pronounced at higher protein concentrations. This suggests a preferential binding of Bis-ANS to the dimeric form of the repressor. Binding of single operator OR1 to the N-terminal domain of the repressor causes enhancement of fluorescence of the C-terminal domain bound Bis-ANS. The binding of single operator OR1 also leads to quenching of fluorescence of tryptophan residues, all of which are located in the hinge or the C-terminal domain. Thus two different fluorescent probes indicate an operator-induced conformational change which affects the C-terminal domain. The significance of this conformational change with respect to the function of lambda repressor has been discussed.  相似文献   

9.
10.
On the basis of sequence similarity with other known DNA-binding proteins, the DNA-binding domain of Hin recombinase, residues 139-190, is thought to bind DNA by a helix-turn-helix motif. Two models can be considered that differ in the orientation of the recognition helix in the major groove of DNA. One is based on the orientation of the recognition helix found in the 434 repressor (1-69) and lambda repressor-DNA cocrystals, and the other is based on the NMR studies of lac repressor headpiece. Cleavage by EDTA.Fe attached to a lysine side chain (Ser183----Lys183) near the COOH terminus of Hin(139-184) reveals that the putative recognition helix is oriented toward the center of the inverted repeats in a manner similar to that seen in the 434 and lambda repressor-DNA cocrystals.  相似文献   

11.
12.
13.
The histones H3 and H2a from calf thymus are homologous to the repressor and cro repressor proteins of bacteriophage lambda in a 22-residue segment that has been implicated by mutational and model-building studies in DNA binding. In the lambda proteins this segment is folded into a helix-turn-helix unit of supersecondary structure, and we propose that the homologous regions in the histones possess the same fold. Homology was quantified with a unified procedure based on criteria of identity of key residues, primary structural homology and similarity of secondary structural potential. It has previously been shown that a set of other prokaryotic DNA-binding proteins have primary structural homology with the two lambda proteins. Homologies detected between the histones H4 and H2b and members of this set suggest that these histones also contain the putative DNA-binding fold.  相似文献   

14.
15.
16.
The quaternary structure and dynamics of phage lambda repressor are investigated in solution by 1H-NMR methods. lambda repressor contains two domains separable by proteolysis: an N-terminal domain that mediates sequence-specific DNA-A binding, and a C-terminal domain that contains strong dimer and higher-order contacts. The active species in operator recognition is a dimer. Although the crystal structure of an N-terminal fragment has been determined, the intact protein has not been crystallized, and there is little evidence concerning its structure. 1H-NMR data indicate that the N-terminal domain is only loosely tethered to the C-terminal domain, and that its tertiary structure is unperturbed by proteolysis of the "linker" polypeptide. It is further shown that in the intact repressor structure a quaternary interaction occurs between N-terminal domains. This domain-domain interaction is similar to the dimer contact observed in the crystal structure of the N-terminal fragment and involves the hydrophobic packing of symmetry-related helices (helix 5). In the intact structure this interaction is disrupted by the single amino-acid substitution, Ile84----Ser, which reduces operator affinity at least 100-fold. We conclude that quaternary interactions between N-terminal domains function to appropriately orient the DNA-binding surface with respect to successive major grooves of B-DNA.  相似文献   

17.
The binding of cI-repressor to a series of mutant operators containing OR1 of the right operator of bacteriophage lambda was investigated. Sites OR2 and/or OR3 were inactivated by either point or deletion mutations. The free energy of binding repressor to OR1 in the wildtype operator, delta G1, is -13.7 +/- 0.3 kcal/mol. delta G1 determined for an OR2- operator created by a single point mutation in OR2 is -13.6 +/- 0.2 kcal/mol. In contrast, delta G1 for the binding of repressor to a cloned synthetic OR1 operator containing only 24 bp of lambda sequence is -12.2 +/- 0.1 kcal/mol. When sequence 5' to OR1 is present, the binding affinity increases to -13.0 +/- 0.1 kcal/mol. In addition, the proximity of OR1 to a fragment-end decreases delta G1 from -13.7 to -12.3 +/- 0.1 kcal/mol. These results suggest that the DNA sequence outside the 17 bp OR1 binding-site contributes to the specific binding of cI-repressor.  相似文献   

18.
Recognition of DNA sequences by the repressor of bacteriophage 434   总被引:2,自引:0,他引:2  
The structure of a complex between the DNA-binding domain of phage 434 repressor and a 14 base-pair synthetic DNA operator reveals the molecular interactions important for sequence-specific recognition. A set of contacts with DNA backbone, notably involving hydrogen bonds between peptide-NH groups and DNA phosphates, position the repressor and fix the DNA configuration. Direct interactions between amino acid side chains and DNA bases involve nonpolar van der Waals contacts as well as hydrogen bonds. The structures of the repressor domain and of the 434 cro protein are extremely similar. There appear to be no major conformational changes in the proteins when they bind to DNA.  相似文献   

19.
Laser Raman spectroscopy has been employed to investigate structures of the lambda repressor N-terminal fragment, which recognizes operator DNA. Examination of repressor fragments containing deuterated amide groups and specifically labeled deuteriotyrosines has enabled the assignment of many of the conformation-sensitive Raman bands. By use of Fourier deconvolution and signal averaging techniques, the spectra of both wild-type and mutant sequences have been obtained as a function of the total protein concentration in aqueous solution over the range 5-100 mg/mL. This analysis has permitted monitoring of the monomer-dimer association of the repressor fragment and determination of the effects of dimerization upon individual side-chain interactions and main-chain secondary structure. The spectra are interpreted to reveal the hydrogen-bonding environments of four tyrosines of the N-terminal fragment (Y22, Y60, Y85, and Y88). The fifth tyrosine (Y101) is known from NMR experiments to be exposed to solvent molecules. The results show that in the dimer Y22 and Y85 are each acceptors of a strong hydrogen bond from a positive donor group, while Y88 is the donor of a strong hydrogen bond to a negative acceptor and Y60, like Y101, is involved in both a donor role and an acceptor role. Y60, Y85, and Y88, which are all near the dimer interface, undergo a collective change in hydrogen-bonding environment with dissociation of the dimer. The net effect of this change is the conversion of one acceptor tyrosine, deduced to be Y88, to a combined donor and acceptor role. The Raman results also indicate a predominantly alpha-helical structure for the N-terminal fragment in aqueous solution, with 70 +/- 4% of the residues incorporated into helical domains. The amount of alpha-helix determined from the Raman spectrum is consistent with X-ray and prediction results and is altered neither by the mutations C85----Y85 and C88----Y88 nor by dissociation of the dimer.  相似文献   

20.
BldD is a central regulator of the developmental process in Streptomyces coelicolor. The 1.8 angstroms resolution structure of the DNA-binding domain of BldD (BldDN) reveals that BldDN forms a compact globular domain composed of four helices (alpha1-alpha4) containing a helix-turn-helix motif (alpha2-alpha3) resembling that of the DNA-binding domain of lambda repressor. The BldDN/DNA complex model led us to design a series of mutants, which revealed the important role of alpha3 and the 'turn' region between alpha2 and alpha3 for DNA recognition. Based on the fact that BldD occupies two operator sites of bldN and whiG and shows significant disparity in the affinity toward the two operator sites when they are disconnected, we propose a model of cooperative binding, which means that the binding of one BldD dimer to the high affinity site facilitates that of the second BldD dimer to the low affinity site. In addition, structural and mutational investigation reveals that the Tyr62Cys mutation, found in the first-identified bldD mutant, can destabilize BldD structure by disrupting the hydrophobic core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号