首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To clarify whether an antibacterial surfactant, cetyltrimethylammonium bromide (CTAB), induces superoxide stress in bacteria, we investigated the generation of superoxide and hydrogen peroxide and expression of soxR, soxS and soxRS regulon genes in Escherichia coli cells with the treatment of CTAB. Methods and Results: In situ oxidative stress analyses with BES fluorescent probes revealed that generation of both superoxide and hydrogen peroxide were significantly increased with the CTAB treatment at a sublethal concentration in wild‐type strain OW6, compared with the CTAB‐resistant strain OW66. The activity of manganese–superoxide dismutase (Mn–SOD), a member of the soxRS regulon proteins, was decreased by the CTAB treatment only in strain OW6. Furthermore, quantitative real‐time PCR analyses revealed that expression of the soxRS regulon genes was not upregulated, although soxS was upregulated by the CTAB treatment in strain OW6. Conclusions: Cetyltrimethylammonium bromide treatment led E. coli cells to a generation state of superoxide and hydrogen peroxide. It was also suggested that superoxide generation was caused by inhibiting SoxS function and decreasing Mn–SOD activity. Significance and Impact of the Study: It was revealed that excess superoxide generation in bacterial cells play a key action of antibacterial surfactants.  相似文献   

2.
The spontaneous antimicrobial surfactant-resistant mutant, Escherichia coli OW66, has been isolated, and its physiological properties have been characterized in our previous paper (Ishikawa et al., J Appl Microbiol 92:261–268, 2002b). This report revealed that strain OW66 had seven mutations in their chromosomal DNA by comparative genomic hybridization microarray, and that their alternative functions were involved in cell resistance to antimicrobial surfactants. These mutations were located in oppB, ydcR, IVR(vacJ-yfdC), rpoN, rpoB, rpoC, and soxR. Furthermore, seven of the single-mutated isogenic strains and seven of the six-mutated isogenic strains were constructed from strains OW6 (NBRC106482) and OW66, respectively, through homologous recombination, and their resistances to an antimicrobial surfactant were measured using the minimum inhibitory concentration method. These results revealed that all six-mutated strains were more sensitive than strain OW66, and that the soxR66 mutation was independently involved in antimicrobial surfactant resistance of E. coli cells. Expression of soxR66 and soxS was increased in both strains OW66 and OW6-soxR66 without the surfactant treatment by the quantitative real time-polymerase chain reaction analysis, compared with strain OW6. Two-dimensional polyacrylamide gel electrophoresis analysis also revealed that some proteins in the soxRS regulon, including Mn-SOD, were overexpressed in both strains OW66 and OW6-soxR66. These results indicate that the soxR66 mutation leads to the constitutive expression of the soxRS regulon, resulting in the acquired resistance of E. coli cells to an antimicrobial surfactant.  相似文献   

3.
AIMS: In order to clarify the involvement of an energy-yielding system in the antibacterial action of surfactants, the effects of carbon source and anaerobiosis during the growth period on the surfactant sensitivity of Escherichia coli cells were investigated. METHODS AND RESULTS: Cetyltrimethylammonium bromide (CTAB) and N-dodecyl-N,N-dimethylglycine, at relatively low concentrations, caused a delay in growth of E. coli cells. Cells grown in M9 medium supplemented with glycerol, succinate or acetate as a carbon source were more sensitive to surfactants and had a higher respiratory activity than those grown with glucose. Cultivation under anaerobiosis made cells resistant to CTAB. CONCLUSIONS: Bacterial sensitivity to surfactants was affected by carbon source and anaerobiosis. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained should be helpful in determining suitable conditions of treatment in the practical use of surfactants for bacterial decontamination.  相似文献   

4.
AIMS: To better understand antibiotic resistance of Enterobacter cloacae isolates originated from food animals, the phenotypic and genotypic resistance of Ent. cloacae isolates from retail ground beef, cattle farm, processing facilities and clinical settings were investigated. METHODS AND RESULTS: The ampC, ampD and ampR genes in the isolates were sequenced and analysed. beta-Lactamase activities and beta-lactamase profiles of the isolates were analysed by the enzymatic hydrolysis of nitrocefin and isoelectric focussing, respectively. The ampC gene of the Ent. cloacae isolate was cloned and transformed into Escherichia coli strains. The genomic DNA profiles of Ent. cloacae isolates were analysed by using pulse field gel electrophoresis (PFGE). Mutation at one residue (Val-54-->Ile) in the AmpR amino acid sequence was consistently found in Ent. cloacae isolates that were resistant to a broadspectrum of beta-lactam agents. The enzyme activity in the isolates was induced by cefoxitin. The pI (isoelectric point) of the enzymes produced by the test strains ranged from 8.4 to 8.9. Cloning of ampC gene of the Ent. cloacae isolate conferred the resistance to ampicillin, cephalothin and amoxicillin in recipient E. coli strains. One recipient of E. coli O157:H7 strain additionally acquired resistance to ceftiofur. The genomic analysis of Ent. cloacae isolates by PFGE showed that the isolates from various sources were genetically unrelated. CONCLUSIONS: The spread of diverse clones of AmpC-producing Ent. cloacae occurred in the ecosystem and retail products. SIGNIFICANCE AND IMPACT OF THE STUDY: Our findings suggested that AmpC-producing Ent. cloacae could be a contributor in spreading beta-lactamase genes in farm environments and food processing environments.  相似文献   

5.
Sensitivity to various oxidants was determined for Escherichia coli strains JTG10 and 821 deficient in biosynthesis of glutathione (gsh-) and their common parental strain AB1157 (gsh+). The three strains showed identical sensitivity to H2O2. E. coli 821 was more resistant than AB1157 and JTG10 to menadione, cumene hydroperoxide, and N-ethylmaleimide. This resistance was not related to the gsh mutation because the other gsh- mutant and the parental strain showed similar sensitivity to these oxidants. The measured activities of NADPH:menadione diaphorase and glucose-6-phosphate dehydrogenase and the extracellular level of menadione suggested that the enhanced resistance of E. coli 821 to menadione might be due to decreased diaphorase activity, but not to a lowered rate of menadione uptake.  相似文献   

6.
Escherichia coli F-17 Sr a human faecal isolate, is resistant to the T-series of bacteriophages (i.e. T2 to T7). A T2-sensitive mutant of E. coli F-17 Sr was isolated following acriflavin treatment. This mutant, E. coli F-17 Sr Ts was found to be sensitive to the entire T-series of phages. E. coli F-17 Sr and E. coli F-17 Sr Ts did not differ quantitatively in total LPS content. However, analysis of LPS revealed that a large fraction of E. coli F-17 Sr Ts was devoid of O-side-chains. This accounted for the sensitivity of this strain to bacteriophages T3, T4, and T7. In addition, E. coli F-17 Sr Ts contained only about half the amount of capsular material contained by E. coli F-17 Sr accounting for the sensitivity of the mutant to bacteriophages T2, T5, and T6. Although the two strains colonized equally well when fed individually to streptomycin-treated mice, when fed simultaneously to streptomycin-treated mice, E. coli F-17 Sr Ts colonized at a level of about 1 x 10(8) cells (g faeces)-1, whereas E. coli F-17 Sr colonized at only 1 x 10(4) cells (g faeces)-1. These studies suggest that bacterial cell surface components modulate the large intestine colonizing ability of E. coli F-17 Sr in the mouse large intestine.  相似文献   

7.
AIMS: To compare pressure resistance between strains of Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter fetus, and to investigate the effect of suspending medium on pressure resistance of sensitive and more resistant strains. METHODS AND RESULTS: Six strains of C. jejuni and four each of C. coli, C. lari and C. fetus were pressure treated for 10 min at 200 and 300 MPa. Individual strains varied widely in pressure resistance but there were no significant differences between the species C. jejuni, C. coli and C. lari. Campylobacter fetus was significantly more pressure sensitive than the other three species. The pressure resistance of C. jejuni cultures reached a maximum at 16-18 h on entry into stationary phase then declined to a minimum at 75 h before increasing once more. Milk was more baroprotective than water, broth or chicken slurry but did not prevent inactivation even of a resistant strain at 400 MPa. CONCLUSIONS: Pressure resistance varies considerably between species of Campylobacter and among strains within a species, and survival after a pressure challenge will be markedly influenced by culture age and food matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: Despite the strain variation in pressure resistance and protective effects of food, Campylobacter sp. do not present a particular problem for pressure processing.  相似文献   

8.
A series of isogenic mutants lacking either the O1 (O-:K66) or K66 (O1:K-) antigens or both (O-:K-), some of which had additional defects in their LPS core polysaccharide was used to examine the interaction between polymorphonuclear leucocytes (PMNLs) and K. pneumoniae serotype O1:K66. In the absence of serum complement, only a O-:K- strain with a deep rough LPS chemotype elicited a PMNL-dependent chemiluminescent (CL) response. However, following opsonization of the non-capsulated strains by complement, the largest CL response was to the O1:K- mutant. This mutant also activated and bound more complement C3 than any of the other encapsulated or non-capsulated strains examined. Despite the surface exposure of smooth and rough LPS in the encapsulated parent and mutant strains, the K66 antigen reduced the binding of C3 and prevented PMNL activation. Both anti-LPS and anti-K66 antibodies, however, stimulated a PMNL-dependent CL response to the K66 bearing strains.  相似文献   

9.
Tyrosinase (EC 1.14.18.1) is a monophenol oxidase responsible for the synthesis of the black pigment known as melanin. The tyrosinase gene (melA) is plasmid-encoded in many rhizobial species. In Rhizobium etli CFN42, the genetic location of melA in the symbiotic plasmid (p42d) and its RpoN-NifA regulation suggest an involvement in symbiosis. In this work, we analyzed the symbiotic phenotype of a streptomycin-resistant derivative of CFN42 (CE3), a melA mutant (SP2) and a complemented strain (SP66), demonstrating that melA inactivation reduced nodule formation rate and diminished total nodule number by 27% when compared to the CE3 strain. The nitrogen fixation capacity of the mutant strain was not affected. Also, in vitro assays were performed where the resistance of CE3, SP2 and SP66 strains to H(2)O(2) was evaluated; the melA mutant strain was consistently less resistant to peroxide. In another series of experiments, Escherichia coli W3110 strain expressing R. etli melA displayed enhanced resistance to p-hydroxybenzoic, vanillinic and syringic acids, which are phenolic compounds frequently found in the soil. Our results are the first to demonstrate a specific role for tyrosinase in R. etli: this enzyme is required during early symbiosis, apparently providing resistance against reactive oxygen species and phenolic compounds generated as part of the plant protective responses.  相似文献   

10.
In a previous study, we identified Congo red-binding and -nonbinding phase variants of Escherichia coli serotype O157:H7 strain ATCC 43895. The Congo red-binding variant, strain 43895OR, produced a dry, aggregative colony that was similar to the red, dry, and rough (rdar) phenotype characteristic of certain strains of Salmonella. In contrast, variant 43895OW produced a smooth and white colony morphology. In this study, we show that, similar to rdar strains of Salmonella enterica serovar Typhimurium, strain 43895OR forms large aggregates in broth cultures, firm pellicles at the air-medium interface on glass, and dense biofilms on glass and polystyrene. However, unlike S. enterica serovar Typhimurium, strain 43895OR does not stain positive for cellulose production. When strain 43895OR was fixed on agar, scanning electron microscopy showed cells expressing extracellular matrix (ECM) containing curli fibers. Strain 43895OW was devoid of any ECM or curli fibers on agar but showed expression of curli fibers during attachment to glass. Strain 43895OR produced >4-fold-larger amounts of biofilm than strain 43895OW on polystyrene, glass, stainless steel, and Teflon; formation was >3-fold higher in rich medium than in nutrient-limited medium. Biofilm-associated cells of both strains showed statistically greater resistance (P < 0.05) to hydrogen peroxide and quaternary ammonium sanitizer than their respective planktonic cells. This study shows that the rdar phenotype of E. coli O157:H7 strain 43895OR is important in multicellular growth, biofilm formation, and resistance to sanitizers. However, the lack of cellulose production by strain 43895OR indicates important differences in the ECM composition compared to that of Salmonella.  相似文献   

11.
AIMS: The aims of this study were to investigate the epidemiology of quinolone-resistant and -susceptible porcine isolates of Campylobacter coli and to characterize the genetic basis of quinolone resistance. METHODS AND RESULTS: Penner serotyping and flagellin gene sequence polymorphisms were used to investigate the epidemiology of the C. coli isolates. A total of 55 isolates were included, of which 30 were paired resistant and susceptible isolates from 15 pigs. Amplification of gyrA, gyrB and parC, followed by direct sequencing of amplicons was used to identify mutations in the targets of quinolones. Overall, 31 of the isolates were resistant to ciprofloxacin (minimum inhibitory concentrations (MIC), 2- >or = 32 microg x ml(-1)). Thirteen DdeI-flaA profiles were observed and resistant and susceptible strains were identified for nine profiles. The majority of resistant strains exhibited either profile 1 or 6. While profile 1 comprised susceptible and resistant strains, all of the strains with profile 6 were resistant to ciprofloxacin. The serogroup (O:24) of the profile 6 strains was identical. The only other serogroup to be uniformly associated with quinolone resistance was O:5. Strains with this phenotype comprised a number of genotypes, including profile 1. Only four of the paired isolates from individual pigs had the same profile. The genetic basis of quinolone resistance was investigated in two strains with ciprofloxacin MICs of 2 and > or = 32 miccrog x ml(-1), respectively. The amino acid substitution of isoleucine for threonine at position 86 was identified in the GyrA proteins from both strains. No mutations were identified in the GyrB proteins. CONCLUSIONS: There was an association between two of the genotypes, serotypes 5 and 24, and quinolone resistance. The association between genotype, serotype and resistance in C. coli isolates has not been reported previously. Only the mutation in GyrA associated with quinolone resistance was identified. No mutations in GyrB were identified. Amplification products of parC were not obtained and it may be that this gene is not present in some Campylobacter spp. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides data on the distribution of ciprofloxacin resistance between subtypes of C. coli.  相似文献   

12.
ibeA is a virulence factor found in some extraintestinal pathogenic Escherichia coli (ExPEC) strains from the B2 phylogenetic group and particularly in newborn meningitic and avian pathogenic strains. It was shown to be involved in the invasion process of the newborn meningitic strain RS218. In a previous work, we showed that in the avian pathogenic E. coli (APEC) strain BEN2908, isolated from a colibacillosis case, ibeA was rather involved in adhesion to eukaryotic cells by modulating type 1 fimbria synthesis (M. A. Cortes et al., Infect. Immun. 76:4129-4136, 2008). In this study, we demonstrate a new role for ibeA in oxidative stress resistance. We showed that an ibeA mutant of E. coli BEN2908 was more sensitive than its wild-type counterpart to H(2)O(2) killing. This phenotype was also observed in a mutant deleted for the whole GimA genomic region carrying ibeA and might be linked to alterations in the expression of a subset of genes involved in the oxidative stress response. We also showed that RpoS expression was not altered by the ibeA deletion. Moreover, the transfer of an ibeA-expressing plasmid into an E. coli K-12 strain, expressing or not expressing type 1 fimbriae, rendered it more resistant to an H(2)O(2) challenge. Altogether, these results show that ibeA by itself is able to confer increased H(2)O(2) resistance to E. coli. This feature could partly explain the role played by ibeA in the virulence of pathogenic strains.  相似文献   

13.
The resistance of Escherichia coli O157:H7 strains ATCC 43895-, 43895-EPS (an exopolysaccharide [EPS]-overproducing mutant), and ATCC 43895+ (a curli-producing mutant) to chlorine, a sanitizer commonly used in the food industry, was studied. Planktonic cells of strains 43895-EPS and/or ATCC 43895+ grown under conditions supporting EPS and curli production, respectively, showed the highest resistance to chlorine, indicating that EPS and curli afford protection. Planktonic cells (ca. 9 log(10) CFU/ml) of all strains, however, were killed within 10 min by treatment with 50 microg of chlorine/ml. Significantly lower numbers of strain 43895-EPS, compared to those of strain ATCC 43895-, attached to stainless steel coupons, but the growth rate of strain 43895-EPS on coupons was not significantly different from that of strain ATCC 43895-, indicating that EPS production did not affect cell growth during biofilm formation. Curli production did not affect the initial attachment of cells to coupons but did enhance biofilm production. The resistance of E. coli O157:H7 to chlorine increased significantly as cells formed biofilm on coupons; strain ATCC 43895+ was the most resistant. Population sizes of strains ATCC 43895+ and ATCC 43895- in biofilm formed at 12 degrees C were not significantly different, but cells of strain ATCC 43895+ showed significantly higher resistance than did cells of strain ATCC 43895-. These observations support the hypothesis that the production of EPS and curli increase the resistance of E. coli O157:H7 to chlorine.  相似文献   

14.
The effect of anionic (sodium dodecyl sulphate or SDS) and cationic (cetyltrimethylammonium bromide or CTAB) surfactants on the stability of binary bacterial coaggregates comprising Acinetobacter johnsonii S35 and Oligotropha carboxidovorans S23 (both sewage sludge isolates) was studied and compared with that on the complex sewage sludge flocs. Both SDS and CTAB enhanced the bacterial coaggregation at their lower concentrations of 0.2 and 0.07 mg ml(-1), respectively. However, complete deflocculation of coaggregates was observed at 1 mg ml(-1) SDS and 0.3 mg l(-1) CTAB concentrations. Further, sewage sludge flocs did not deflocculate in the presence of CTAB, although a concentration-dependent deflocculation was observed in the presence of SDS. A. johnsonii S35 and O. carboxidovorans S23 cells were separately pretreated (prior to coaggregation) with the surfactants. In spite of the partial (complete) loss of viability during SDS (CTAB) pretreatment, washed cells still retained hydrophobic character and displayed significant coaggregation (aggregation index ranging from 84% to 97% in comparison to 96% in the case of non-treated cells), demonstrating reversibility of the surfactant induced deflocculation. Further, when exposed to lower concentration of surfactants (0.2 mg ml(-1) SDS), coaggregates were more resistant (76% viability) as compared to the individual partner (S35: 52%; S23: 39% viability). Since the coaggregates are stable and provide protection from surfactants at lower concentrations (those normally expected in the sewage treatment plants), their presence as well as a sustained role in the sewage sludge bioflocculation is evident.  相似文献   

15.
Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log P(OW) of the solvent, where P(OW) is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of delta acrAB and/or delta tolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log P(OW) = 5.5). The delta tolC mutant was more sensitive to nonane than the delta acrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log P(OW) higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The delta tolC mutant accumulated n-nonane or decane (log P(OW) = 6. 0) more abundantly than the parent or the delta acrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log P(OW) in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane.  相似文献   

16.
AIMS: To study the effect of oral administration of a quinolone on emergence of resistance in an indicator bacterial species from faecal flora. METHODS AND RESULTS: Quinolone resistance was studied in Escherichia coli obtained from the faecal contents of pigs housed in nine commercial farrow-to-finish herds in France after administration of flumequine to sows. The percentage of quinolone-resistant E. coli increased in the faeces of sows after administration of flumequine (mean 21.78% at day 7 vs 6.42% before treatment for nalidixic acid) and then decreased (mean 12.6 and 10.4 at days 30 and 60, respectively for nalidixic acid), being not significantly different from initial values 1 month post-treatment. In young pigs, the proportion of resistant strains was lower and decreased over rearing period. Moreover, changes over time of both total E. coli and the proportion of resistant bacteria exhibited great inter-individual variability. CONCLUSIONS: Restoration of susceptible faecal flora occurred within 2 months after flumequine treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Effect of flumequine treatment of sows on the quinolone resistance of faecal E. coli of both sows and their progeny is noticeable but transitory.  相似文献   

17.
The inhibition of bacterial motility was studied by a trifluoro methyl ketone derivative on two Escherichia coli strains (wild strain having a proton pump system and the proton pump-deficient mutant strain) and two Helicobacter pylori strains (clarithromycin susceptible and clarithromycin resistant). Evidence is presented of the inhibitory action of 1-(2-benzoxazolyl)-3,3,3-trifluoro-2-propanone (TF18) on the proton motive forces of the two bacterial strains by affecting the action of biological motor and proton efflux in the membranes. The swimming, the forward motion was more sensitive than the vibration or tumbling to the inhibition. We suppose that the inhibiton of bacterial motility is related to the virulence of bacteria: consequently the pathogenicity can be reduced in the presence of TF18.  相似文献   

18.
AIMS: To use random mutagenesis for the characterization of Legionella pneumophila lipopolysaccharide (LPS) components and serotypes. METHODS AND RESULTS: Five strains belonging to different serogroups and/or monoclonal subgroups were mutagenized using a mini-Tn10 transposon. Exactly 11 819 mutants were checked for alterations in LPS using at least 11 monoclonal antibodies (mAbs) that define L. pneumophila serotypes. Among the mutants, five different mini-Tn10 insertions were identified. Four mutants originating from serogroup-1 did not lose their serogroup-specific epitope, but did sustain subtler changes that resulted in switches to different mAb subgroups. In contrast, a mutant from serogroup-6 lost its serogroup-specific epitope, while retaining a serogroup-cross-reacting epitope. CONCLUSIONS: Random mutagenesis is a valuable tool for LPS epitope mapping. While some characteristics of L. pneumophila LPS can be altered, others appear resistant to mutagenesis. This underscores both the flexibility and rigidity of LPS architecture in L. pneumophila. SIGNIFICANCE AND IMPACT OF THE STUDY: Losses of L. pneumophila LPS epitopes can result in new serotypes, changes that might escape detection by current DNA-based typing schemes. But, as the frequency of these changes is rare, based upon our observations, serotyping should remain an important tool for identifying L. pneumophila in water systems that are implicated in human infection.  相似文献   

19.
H Kruse  H Srum 《Applied microbiology》1994,60(11):4015-4021
Plasmids harboring multiple antimicrobial-resistance determinants (R plasmids) were transferred in simulated natural microenvironments from various bacterial pathogens of human, animal, or fish origin to susceptible strains isolated from a different ecological niche. R plasmids in a strain of the human pathogen Vibrio cholerae O1 E1 Tor and a bovine Escherichia coli strain were conjugated to a susceptible strain of the fish pathogenic bacterium Aeromonas salmonicida subsp. salmonicida in marine water. Conjugations of R plasmids between a resistant bovine pathogenic E. coli strain and a susceptible E. coli strain of human origin were performed on a hand towel contaminated with milk from a cow with mastitis. A similar conjugation event between a resistant porcine pathogenic E. coli strain of human origin was studied in minced meat on a cutting board. Conjugation of R plasmids between a resistant strain of the fish pathogenic bacterium A. salmonicida subsp. salmonicida and a susceptible E. coli strain of human origin was performed in raw salmon on a cutting board. R plasmids in a strain of A. salmonicida subsp. salmonicida and a human pathogenic E. coli strain were conjugated to a susceptible porcine E. coli strain in porcine feces. Transfer of the different R plasmids was confirmed by plasmid profile analyses and determination of the resistance pattern of the transconjugants. The different R plasmids were transferred equally well under simulated natural conditions and under controlled laboratory conditions, with median conjugation frequencies ranging from 3 x 10(-6) to 8 x 10(-3). The present study demonstrates that conjugation and transfer of R plasmids is a phenomenon that belongs to the environment and can occur between bacterial strains of human, animal, and fish origins that are unrelated either evolutionarily or ecologically even in the absence of antibiotics. Consequently, the contamination of the environment with bacterial pathogens resistant to antimicrobial agents is a real threat not only as a source of disease but also as a source from which R plasmids can easily spread to other pathogens of diverse origins.  相似文献   

20.
Plasmids harboring multiple antimicrobial-resistance determinants (R plasmids) were transferred in simulated natural microenvironments from various bacterial pathogens of human, animal, or fish origin to susceptible strains isolated from a different ecological niche. R plasmids in a strain of the human pathogen Vibrio cholerae O1 E1 Tor and a bovine Escherichia coli strain were conjugated to a susceptible strain of the fish pathogenic bacterium Aeromonas salmonicida subsp. salmonicida in marine water. Conjugations of R plasmids between a resistant bovine pathogenic E. coli strain and a susceptible E. coli strain of human origin were performed on a hand towel contaminated with milk from a cow with mastitis. A similar conjugation event between a resistant porcine pathogenic E. coli strain of human origin was studied in minced meat on a cutting board. Conjugation of R plasmids between a resistant strain of the fish pathogenic bacterium A. salmonicida subsp. salmonicida and a susceptible E. coli strain of human origin was performed in raw salmon on a cutting board. R plasmids in a strain of A. salmonicida subsp. salmonicida and a human pathogenic E. coli strain were conjugated to a susceptible porcine E. coli strain in porcine feces. Transfer of the different R plasmids was confirmed by plasmid profile analyses and determination of the resistance pattern of the transconjugants. The different R plasmids were transferred equally well under simulated natural conditions and under controlled laboratory conditions, with median conjugation frequencies ranging from 3 x 10(-6) to 8 x 10(-3). The present study demonstrates that conjugation and transfer of R plasmids is a phenomenon that belongs to the environment and can occur between bacterial strains of human, animal, and fish origins that are unrelated either evolutionarily or ecologically even in the absence of antibiotics. Consequently, the contamination of the environment with bacterial pathogens resistant to antimicrobial agents is a real threat not only as a source of disease but also as a source from which R plasmids can easily spread to other pathogens of diverse origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号