首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orthopoxviruses evade host immune responses by using a number of strategies, including decoy chemokine receptors, regulation of apoptosis, and evasion of complement-mediated lysis. Different from other poxviral subfamilies, however, orthopoxviruses are not known to evade recognition by CTL. In fact, vaccinia virus (VV) is used as a vaccine against smallpox and a vector for eliciting strong T cell responses to foreign Ags. and both human and mouse T cells are readily stimulated by VV-infected APC in vitro. Surprisingly, however, CD8(+) T cells of mice infected with cowpox virus (CPV) or VV recognized APC infected with VV but not APC infected with CPV. Likewise, CD8(+) T cells from vaccinated human subjects could not be activated by CPV-infected targets and CPV prevented the recognition of VV-infected APC upon coinfection. Because CD8(+) T cells recognize viral peptides presented by MHC class I (MHC I), we examined surface expression, total levels, and intracellular maturation of MHC I in CPV- and VV-infected human and mouse cells. Although total levels of MHC I were unchanged, CPV reduced surface levels and inhibited the intracellular transport of MHC I early during infection. CPV did not prevent peptide loading of MHC I but completely inhibited MHC I exit from the endoplasmic reticulum. Because this inhibition was independent of viral replication, we conclude that an early gene product of CPV abrogates MHC I trafficking, thus rendering CPV-infected cells "invisible" to T cells. The absence of this immune evasion mechanism in VV likely limits virulence without compromising immunogenicity.  相似文献   

2.
An in vitro culture and assay system was used to determine whether cytotoxic lymphocytes are generated in humans after rickettsial infection. Peripheral blood mononuclear cells (PBMC) were obtained from six individuals with serologic evidence of prior infection with typhus group rickettsiae and from six nonimmune individuals. After PBMC from immune individuals were stimulated in vitro for 7 days with rickettsial antigen, they were capable of lysing typhus group rickettsia-infected, autologous phytohemagglutinin (PHA)-induced blasts, but not uninfected PHA-blasts. No cytotoxic effector cells were generated when either PBMC from immune individuals were placed in culture for 7 days without antigenic stimulation, or when PBMC from nonimmune individuals were stimulated in vitro with antigen for 7 days. Freshly isolated PBMC from immune donors were also unable to lyse typhus group rickettsia-infected autologous PHA-blasts or an autologous rickettsia-infected lymphoblastoid cell line (LCL). Neither supernatants from antigen-stimulated cultures of PBMC from immune donors nor recombinant human interferon-gamma were capable of significantly lysing typhus group rickettsia-infected PHA blasts by this assay. Populations of cytotoxic effector cells depleted of OKT3, OKT4, or OKT8-positive cells by treatment with the respective monoclonal antibodies and complement were assayed for their cytotoxic capacity. The results suggest that the cytotoxic effector cell population is predominantly OKT3 and OKT8-positive, but OKT4-negative. Positive selection with the use of a fluorescence-activated cell sorter also suggested that most of the cytotoxic effector cells are OKT8-positive. PBMC from immune donors after in vitro stimulation with rickettsial antigen were capable of significantly lysing infected autologous LCL or infected HLA-mismatched LCL as compared with the respective uninfected controls. In addition, PBMC from either immune donors or nonimmune donors after stimulation in vitro for 7 days with media containing purified lymphokines were capable of significantly lysing autologous infected LCL as compared with the uninfected autologous control. We conclude that lysis of cells infected with typhus group rickettsiae is mediated by a lymphokine-activated killer.  相似文献   

3.
4.
HSV type 1 (HSV-1) has evolved numerous strategies for modifying immune responses that protect against infection. Important targets of HSV-1 infection are the MHC-encoded peptide receptors. Previous studies have shown that a helper T cell response and Ab production play important roles in controlling HSV-1 infection. The reduced capacity of infected B cells to stimulate CD4(+) T cells is beneficial for HSV-1 to evade immune defenses. We investigated the impact of HSV-1 infection on the MHCII processing pathway, which is critical to generate CD4(+) T cell help. HSV-1 infection targets the molecular coplayers of MHC class II processing, HLA-DR (DR), HLA-DM (DM), and invariant chain (Ii). HSV-1 infection strongly reduces expression of Ii, which impairs formation of SDS-resistant DR-peptide complexes. Residual activity of the MHC class II processing pathway is diminished by viral envelope glycoprotein B (gB). Binding of gB to DR competes with binding to Ii. In addition, we found gB associated with DM molecules. Both, gB-associated DR and DM heterodimers are exported from the endoplasmic reticulum, as indicated by carbohydrate maturation. Evaluation of DR, DM, and gB subcellular localization revealed abundant changes in intracellular distribution. DR-gB complexes are localized in subcellular vesicles and restrained from cell surface expression.  相似文献   

5.
Cytolytic human T cell clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes.  相似文献   

6.
Adaptive immune responses in which CD8(+) T cells recognize pathogen-derived peptides in the context of major histocompatibility complex class I molecules play a major role in the host defense against infection with intracellular pathogens. Cells infected with intracellular bacteria such as Listeria monocytogenes, Salmonella enterica serovar Typhimurium, or Mycobacterium tuberculosis are directly lysed by cytotoxic CD8(+) T cells. For this reason, current vaccines for intracellular pathogens, such as subunit vaccines or viable bacterial vaccines, aim to generate robust cytotoxic T-cell responses. In order to investigate the capacity of a herpes simplex virus type 1 (HSV-1) vector to induce strong cytotoxic effector cell responses and protection from infection with intracellular pathogens, we developed a replication-deficient, recombinant HSV-1 (rHSV-1) vaccine. We demonstrate in side-by-side comparison with DNA vaccination that rHSV-1 vaccination induces very strong CD8(+) effector T-cell responses. While both vaccines provided protection from infection with L. monocytogenes at low, but lethal doses, only rHSV-1 vaccines could protect from higher infectious doses; HSV-1 induced potent memory cytotoxic T lymphocytes that, upon challenge by pathogens, efficiently protected the animals. Despite the stimulation of relatively low humoral and CD4-T-cell responses, rHSV-1 vectors are strong candidates for future vaccine strategies that confer efficient protection from subsequent infection with intracellular bacteria.  相似文献   

7.
MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.  相似文献   

8.
Trypanosoma cruzi, the causative agent of Chagas disease, is able to reproduce intracellularly in many host cell types while in the mammalian host. Although cellular immunity is known to be important in resistance to infection, the ability of immune cells to interfere with the completion of the intracellular growth cycle of T. cruzi has not been described. Using a tissue culture system to study the parasite growth cycle, we have found that spleen cells from infected mice are able to decrease the number of parasites released from infected fibroblasts. Spleen cells from mice infected for as few as 14 days and as long as 300 days display this inhibitory ability. Parasite egress from infected cells is inhibited by factor(s) released by immune cells during coculture with infected fibroblasts. Immune cell depletion studies indicate that the inhibitory activity requires the presence of both CD4+ T cells and mu+ B cells. These results suggest a direct ability of immune cells to somehow interfere with the completion of the intracellular cycle, and this ability may play a role in control of this parasite.  相似文献   

9.
The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular parasite growth.  相似文献   

10.
The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.  相似文献   

11.
Host immunity to Mycobacterium tuberculosis is mediated by T cells that recognize and activate infected macrophages to control intracellular bacterial replication. The early appearance of T cells in the lungs of infected mice correlates with greater resistance to infection. However, it is unknown whether the trafficking of T cells to the lung following infection is dependent upon the expression of certain adhesion molecules. To address this question, we infected knockout (KO) mice that have defective expression of CD11a, CD11b, CD18, CD62, CD103, or beta7. We found that the integrins CD11a and CD18 are absolutely required for host resistance following infection with aerosolized M. tuberculosis. Although Ag-specific T cells are generated following infection of CD11a KO mice, T cell priming is delayed, T cell trafficking to the lung is impaired, and fewer ESAT6-specific CD4+ T cells are found in the lungs of CD11a KO mice compared with control mice. Thus, LFA-1 (CD11a/CD18) plays an essential role in immunity to M. tuberculosis infection.  相似文献   

12.
This report describes studies characterizing the virus-specific cytotoxic effector cells which are present in the spleens of mice 7 days after infection with Coxsackievirus B-3. An in vitro 51Cr assay employing eyngeneic virus-infected neonatal fibroblasts was used to measure cytotoxic activity. Treatment of immune cells with (anti-thy-1.2) and complement abolished dtheir cytotoxic activity, but no reduction occurred when B cells were removed by incubation with anti-Ig and complement or macrophages eliminated by adherence depletion. The findings therefore imply that the cytotoxic reaction was mediated by sensitized T cells and that B cells and macrophages did not play an important role. Reciprocal assays performed with BALB/c and CBA/J cells showed that Coxsackievirus-immune spleen cells lysed infected syngeneic targets but not allogeneic targets, providing further evidence that cytotoxicity was mediated by effector T cells. In addition and in vitro assay system employing neonatal myocardial cells was developed and used to demonstrate that Coxsackievirus-infected myofibers were susceptible to destruction by immune spleen cells. The evidence suggests that mice infected with Coxsackie B viruses are able to mount a cell-mediated immune response with production of cytotoxic T cells which have the capacity to damage tissues infected with these agents.  相似文献   

13.
CD8+ T lymphocytes have been implicated in the protective immune response against human and murine tuberculosis. However, the functional role that this cell subset plays during the resolution of infection remains controversial. In this study, we demonstrate the presence of Mycobacterium tuberculosis-specific CD8+ CTL in the lungs and lung-draining lymph nodes of mice infected with M. tuberculosis via the aerosol or i.v. route. These cells expressed perforin in vivo and specifically recognized and lysed M. tuberculosis-infected macrophages in a perforin-dependent manner after a short period of in vitro restimulation. The efficiency of lysis of infected macrophages was dependent upon the time allowed for interaction between macrophage and M. tuberculosis bacilli. Recognition of infected targets by CD8+ CTL was beta 2-microglobulin and MHC class I dependent and was not CD1d restricted. The presented data indicate that CD8+ T cells contribute to the protective immune response during M. tuberculosis infection by exerting cytotoxic function and lysing infected macrophages.  相似文献   

14.
The mechanisms by which the causative agent of Chagas' disease impair its host's immune response are of paramount importance but poorly understood. Results presented in this paper show for the first time that Trypanosoma cruzi trypomastigotes infect T lymphocytes in vitro and more interestingly in vivo, and that trypomastigotes released from infected cells are infectious. In addition treatment of purified human T lymphocytes with McAb against CD3 and HLA-DR antigens significantly inhibited parasite infection. T. cruzi antigens were detected on the membrane of infected T cells and could therefore represents targets for cytotoxic mechanisms. These results might have important consequences for the understanding of the dramatic disruption of immune response observed during Chagas' disease and more generally provide additional information on T lymphocyte infection by pathogens.  相似文献   

15.
Despite being a major group of intracellular pathogens, the role of class I-restricted T cells in the clearance of Gram-negative bacteria is not resolved. Using a murine typhoid model, a role for class I-restricted T cells in the immune response to the Gram-negative pathogen Salmonella typhimurium is revealed. Class I-deficient beta2-microglobulin-/- mice show increased susceptibility to infection with S. typhimurium. Following infection, CD8+ CTLs specific for Salmonella-infected targets can be readily detected. The Salmonella-specific CTLs recognize infected H-2-mismatched targets, suggesting the involvement of shared class Ib molecules. Studies using transfectants expressing defined class Ia and class Ib molecules indicate the involvement of the class Ib molecule, Qa-1. Ab-blocking studies and the measurement of bacteria-specific CTL frequencies identified Qa-1 as a dominant restricting element. The Qa-1-restricted CTL recognition depends on TAP and proteasome functions. Surprisingly, Qa-1-restricted CTLs recognized cells infected with other closely related Gram-negative bacteria. Taken together, these observations indicate that Salmonella-specific CTLs recognize a cross-reactive epitope presented by Qa-1 molecules and, as such, may be novel targets for vaccine development.  相似文献   

16.
Acute viral infections induce immune deficiencies, as shown by unresponsiveness to mitogens and unrelated antigens. T lymphocytes isolated from mice acutely infected with lymphocytic choriomeningitis virus (LCMV) were found in this study to undergo activation-induced apoptosis upon signalling through the T-cell receptor (TcR)-CD3 complex. Kinetic studies demonstrated that this sensitivity to apoptosis directly correlated with the induction of immune deficiency, as measured by impaired proliferation in response to anti-CD3 antibody or to concanavalin A. Cell cycling in interleukin-2 (IL-2) alone stimulated proliferation of LCMV-induced T cells without inducing apoptosis, but preculturing of T cells from acutely infected mice in IL-2 accelerated apoptosis upon subsequent TcR-CD3 cross-linking. T lymphocytes isolated from mice after the acute infection were less responsive to IL-2, but those T cells, presumably memory T cells, responding to IL-2 were primed in each case to die a rapid apoptotic death upon TcR-CD3 cross-linking. These results indicate that virus infection-induced unresponsiveness to T-cell mitogens is due to apoptosis of the activated lymphocytes and suggest that the sensitization of memory cells by IL-2 induced during infection will cause them to die upon antigen recognition, thereby impairing specific responses to nonviral antigens.  相似文献   

17.
Cells of multicellular organisms are equipped with a self destruction program called apoptosis to ensure homeostasis of the organism. Contraction of the lymphocyte compartment following recovery from an infection is controlled by this mechanism. But apoptosis of lymphocytes might be an Achilles tendon accessible to microbes to subvert the immune system. Evidence is cumulating that microbes use this mechanism to destroy microbe-specific T cells. We present an overview of microbe-induced T cell apoptosis discussing the consequences for the pathogenesis of microbial infection. The conventional role of lymphocytes during infection is to impose apoptotic threat to infected cells, the subject of this review highlights the opposite, lymphocytes as targets of microbe-induced death.  相似文献   

18.
Memory CD8 T cells play a critical role in protective immunity against intracellular pathogens. In addition to their ability to specifically recognize and lyse infected targets, activated CD8 T cells secrete cytokines that induce phagocytic cells to engulf and kill bacterial pathogens. In this study, we asked whether activation of Ag-specific CD8 T cells results in nonspecific killing of bystander bacteria during a mixed infection. Mice with epitope-specific memory CD8 T cells were coinfected with two isogenic strains of recombinant Listeria monocytogenes that differ in the cognate epitope. Recall responses by epitope-specific CD8 T cells rapidly inhibited the growth of epitope-bearing bacteria, impeding the course of infection within 6 h after challenge. This rapid inhibition was highly specific and did not affect the growth of coinfecting bacteria without the epitope. CTL recall did not enhance activation of innate immune cells, as evidenced by the absence of inducible NO synthase production in infectious foci. Our observations demonstrate the remarkable specificity of the bactericidal mechanisms of CTL and reveal the possibility for escape mutants to prevail in the hostile environment of a specific immune response. This implication has a bearing on subunit vaccine design strategies and understanding failure of immunization against bacterial infection.  相似文献   

19.
Following uptake by macrophages, live mycobacteria initially reside within an immature phagosome that resists acidification and retains access to recycling endosomes. Glycolipids are exported from the mycobacterial phagosome and become available for immune recognition by CD1-restricted T cells. The aim of this study was to explore the possibility that lipoproteins might similarly escape from the phagosome and act as immune targets in cells infected with live mycobacteria. We have focused on a 19-kDa lipoprotein from Mycobacterium tuberculosis that was previously shown to be recognized by CD8(+) T cells. The 19-kDa Ag was found to traffic separately from live mycobacteria within infected macrophages by a pathway that was dependent on acylation of the protein. When expressed as a recombinant protein in rapid-growing mycobacteria, the 19-kDa Ag was able to deliver peptides for recognition by MHC class I-restricted T cells by a TAP-independent mechanism. Entry into the class I pathway was rapid, dependent on acylation, and could be blocked by killing the mycobacteria by heating before infection. Although the pattern of 19-kDa trafficking was similar with different mycobacterial species, preliminary experiments suggest that class I presentation is more efficient during infection with rapid-growing mycobacteria than with the slow-growing bacillus Calmette-Guérin vaccine strain.  相似文献   

20.
Chlamydia trachomatis is a global human pathogen causing diseases ranging from blinding trachoma to pelvic inflammatory disease. To explore how innate and adaptive immune responses cooperate to protect against systemic infection with C. trachomatis L2, we investigated the role of macrophages (Mphi) and dendritic cells (DCs) in the stimulation of C. trachomatis-specific CD8(+) T cells. We found that C. trachomatis infection of Mphi and DCs is far less productive than infection of nonprofessional APCs, the typical targets of infection. However, despite the limited replication of C. trachomatis within Mphi and DCs, infected Mphi and DCs process and present C. trachomatis CD8(+) T cell Ag in a proteasome-dependent manner. These findings suggest that although C. trachomatis is a vacuolar pathogen, some Ags expressed in infected Mphi and DCs are processed in the host cell cytosol for presentation to CD8(+) T cells. We also show that even though C. trachomatis replicates efficiently within nonprofessional APCs both in vitro and in vivo, Ag presentation by hematopoietic cells is essential for initial stimulation of C. trachomatis-specific CD8(+) T cells. However, when DCs infected with C. trachomatis ex vivo were adoptively transferred into naive mice, they failed to prime C. trachomatis-specific CD8(+) T cells. We propose a model for priming C. trachomatis-specific CD8(+) T cells whereby DCs acquire C. trachomatis Ag by engulfing productively infected nonprofessional APCs and then present the Ag to T cells via a mechanism of cross-presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号