首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TOR kinases are conserved negative regulators of autophagy in response to nutrient conditions, but the signaling mechanisms are poorly understood. Here we describe a complex containing the protein kinase Atg1 and the phosphoprotein Atg13 that functions as a critical component of this regulation in Drosophila. We show that knockout of Atg1 or Atg13 results in a similar, selective defect in autophagy in response to TOR inactivation. Atg1 physically interacts with TOR and Atg13 in vivo, and both Atg1 and Atg13 are phosphorylated in a nutrient-, TOR- and Atg1 kinase-dependent manner. In contrast to yeast, phosphorylation of Atg13 is greatest under autophagic conditions and does not preclude Atg1-Atg13 association. Atg13 stimulates both the autophagic activity of Atg1 and its inhibition of cell growth and TOR signaling, in part by disrupting the normal trafficking of TOR. In contrast to the effects of normal Atg13 levels, increased expression of Atg13 inhibits autophagosome expansion and recruitment of Atg8/LC3, potentially by decreasing the stability of Atg1 and facilitating its inhibitory phosphorylation by TOR. Atg1-Atg13 complexes thus function at multiple levels to mediate and adjust nutrient-dependent autophagic signaling.  相似文献   

2.
Under normal growth conditions the mammalian target of rapamycin complex 1 (mTORC1) negatively regulates the central autophagy regulator complex consisting of Unc-51-like kinases 1/2 (Ulk1/2), focal adhesion kinase family-interacting protein of 200 kDa (FIP200) and Atg13. Upon starvation, mTORC1-mediated repression of this complex is released, which then leads to Ulk1/2 activation. In this scenario, Atg13 has been proposed as an adaptor mediating the interaction between Ulk1/2 and FIP200 and enhancing Ulk1/2 kinase activity. Using Atg13-deficient cells, we demonstrate that Atg13 is indispensable for autophagy induction. We further show that Atg13 function strictly depends on FIP200 binding. In contrast, the simultaneous knockout of Ulk1 and Ulk2 did not have a similar effect on autophagy induction. Accordingly, the Ulk1-dependent phosphorylation sites we identified in Atg13 are expendable for this process. This suggests that Atg13 has an additional function independent of Ulk1/2 and that Atg13 and FIP200 act in concert during autophagy induction.  相似文献   

3.
《Autophagy》2013,9(12):1424-1433
Under normal growth conditions the mammalian target of rapamycin complex 1 (mTORC1) negatively regulates the central autophagy regulator complex consisting of Unc-51-like kinases 1/2 (Ulk1/2), focal adhesion kinase family-interacting protein of 200 kDa (FIP200) and Atg13. Upon starvation, mTORC1-mediated repression of this complex is released, which then leads to Ulk1/2 activation. In this scenario, Atg13 has been proposed as an adaptor mediating the interaction between Ulk1/2 and FIP200 and enhancing Ulk1/2 kinase activity. Using Atg13-deficient cells, we demonstrate that Atg13 is indispensable for autophagy induction. We further show that Atg13 function strictly depends on FIP200 binding. In contrast, the simultaneous knockout of Ulk1 and Ulk2 did not have a similar effect on autophagy induction. Accordingly, the Ulk1-dependent phosphorylation sites we identified in Atg13 are expendable for this process. This suggests that Atg13 has an additional function independent of Ulk1/2 and that Atg13 and FIP200 act in concert during autophagy induction.  相似文献   

4.
Autophagosome formation is a dynamic process that is strictly controlled by autophagy‐related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14‐ and phosphatidylinositol 3‐kinase‐independent manner. Atg16L1 deletion mutants, which lack the FIP200‐interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.  相似文献   

5.
《Autophagy》2013,9(5):649-662
Macroautophagy is an intracellular, vesicle-mediated mechanism for the sequestration and ultimate lysosomal degradation of cytoplasmic proteins, organelles and macromolecules. The macroautophagy process and many of the autophagy specific (Atg) proteins are remarkably well conserved in higher eukaryotes. In yeast, the Atg1 kinase complex includes Atg1, Atg13, Atg17, and at least four other interacting proteins, some of which are phosphorylated in a TOR-dependent manner, placing the Atg1 signaling complex downstream of a major nutrient-sensing pathway. Atg1 orthologs, including mammalian unc-51-like kinase 1 (ULK1), have been identified in higher eukaryotes and have been functionally linked to autophagy. This suggests that other components of the Atg1 complex exist in higher eukaryotes. Recently, a putative human Atg13 ortholog, FLJ20698, was identified by gapped-BLAST analysis. We show here that FLJ20698 (Atg13) is a ULK1-interacting phosphoprotein that is essential for macroautophagy. Furthermore, we identify a novel, human Atg13-interacting protein, FLJ11773, which we have termed Atg101. Atg101 is essential for autophagy and interacts with ULK1 in an Atg13-dependent manner. Additionally, we present evidence that intracellular localization of the ULK1 complex is regulated by nutrient conditions. Finally, we demonstrate that Atg101 stabilizes the expression of Atg13 in the cell, suggesting that Atg101 contributes to Atg13 function by protecting Atg13 from proteasomal degradation. Therefore, the identification of the novel protein, Atg101, and the validation of Atg13 and Atg101 as ULK1-interacting proteins, suggests an Atg1 complex is involved in the induction of macroautophagy in mammalian cells.  相似文献   

6.
7.
A new technology from Quanterix called SiMoA (single molecule array) which employs a fully automated system capable of ultrasensitive sandwich based ELISA detection was explored. Our studies focused upon the inhibition of the autophagy initiating kinase ULK1 by measuring the both total Atg13 and the phosphorylation of Atg13(pSer318) from control and following compound treatment in either overexpressing or wild type tissue culture samples. The results show linear protein concentration dependence over two orders of magnitude and provide an assay window of 8- to 100-fold signal to background for inhibition of phosphorylation for both wild type and overexpressed samples, respectively. Moreover, overexpressed samples displayed 17-fold pSer318-Atg13 above wild type levels of with no apparent differences in compound potency. Lastly, the inhibition of ULK1 from mouse derived wild type xenografts also demonstrated loss of pSer318-Atg13 upon ULK1 inhibitor treatment that compared favorably to Western blot. These results show that the SiMoA technology can detect quantitatively low levels of endogenous biomarkers with the ability to detect the loss of pSer318-Atg13 upon ULK1 inhibition.  相似文献   

8.
C 2 domains are well characterized as Ca 2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C 2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C 2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C 2A-domain homodimer and the Munc13–1 C 2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C 2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C 2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C 2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes.  相似文献   

9.
The tumor suppressor protein p53 tonically suppresses autophagy when it is present in the cytoplasm. This effect is phylogenetically conserved from mammals to nematodes, and human p53 can inhibit autophagy in yeast, as we show here. Bioinformatic investigations of the p53 interactome in relationship to the autophagy-relevant protein network underscored the possible relevance of a direct molecular interaction between p53 and the mammalian ortholog of the essential yeast autophagy protein Atg17, namely RB1-inducible coiled-coil protein 1 (RB1CC1), also called FAK family kinase-interacting protein of 200 KDa (FIP200). Mutational analyses revealed that a single point mutation in p53 (K382R) abolished its capacity to inhibit autophagy upon transfection into p53-deficient human colon cancer or yeast cells. In conditions in which wild-type p53 co-immunoprecipitated with RB1CC1/FIP200, p53K382R failed to do so, underscoring the importance of the physical interaction between these proteins for the control of autophagy. In conclusion, p53 regulates autophagy through a direct molecular interaction with RB1CC1/FIP200, a protein that is essential for the very apical step of autophagy initiation.  相似文献   

10.
Autophagy is an evolutionarily conserved degradative pathway that has been implicated in a number of physiological events important for human health. This process was originally identified as a response to nutrient deprivation and is thought to serve in a recycling capacity during periods of nutritional stress. Autophagy activity appears to be highly regulated and multiple signaling pathways are known to target a complex of proteins that contains the Atg1 protein kinase. The data here extend these observations and identify a particular phosphorylation event on Atg1 as a potential control point within the autophagy pathway in Saccharomyces cerevisiae. This phosphorylation occurs at a threonine residue, T226, within the Atg1 activation loop that is conserved in all Atg1 orthologs. Replacing this threonine with a nonphosphorylatable residue resulted in a loss of Atg1 protein kinase activity and a failure to induce autophagy. This phosphorylation required the presence of a functional Atg1 kinase domain and two known regulators of Atg1 activity, Atg13 and Atg17. Interestingly, the levels of this modification were found to increase dramatically upon exposure to conditions that induce autophagy. In addition, T226 phosphorylation was associated with an autophosphorylated form of Atg1 that was found specifically in cells undergoing the autophagy process. In all, these data suggest that autophosphorylation within the Atg1 activation loop may represent a point of regulatory control for this degradative process.MACROAUTOPHAGY (hereafter referred to as autophagy) is a highly conserved process of self-degradation that is essential for cell survival during periods of nutrient limitation (Tsukada and Ohsumi 1993). During autophagy, a double membrane grows out from a specific nucleation site, known as the pre-autophagosomal structure, or PAS, in Saccharomyces cerevisiae and the phagophore assembly site in mammals (Suzuki and Ohsumi 2007). This membrane encapsulates bulk protein and other constituents of the cytoplasm and ultimately targets this material to the vacuole/lysosome for degradation (Xie and Klionsky 2007). Recent studies have linked this pathway to a number of processes important for human health, including tumor suppression, innate immunity, and neurological disorders, like Huntington''s disease (Rubinsztein et al. 2007; Levine and Kroemer 2008). Determining how this pathway is regulated is therefore important for our understanding of these processes and our attempts to manipulate autophagy in clinically beneficial ways.Most of the molecular components of the autophagy pathway were initially characterized in the budding yeast, S. cerevisiae, but orthologs of many of these Atg proteins have since been found in other eukaryotes (Tsukada and Ohsumi 1993; Meijer et al. 2007). A complex of proteins that contains the Atg1 protein kinase is of special interest and appears to be a key point of regulatory control within this pathway (Kamada et al. 2000; Budovskaya et al. 2005; He and Klionsky 2009; Stephan et al. 2009). In S. cerevisiae, genetic and biochemical data indicate that this complex is targeted by at least three different signaling pathways. Two of these pathways, involving the Tor and cAMP-dependent protein kinases, inhibit this process, whereas the AMP-activated protein kinase is needed for the full induction of autophagy (Noda and Ohsumi 1998; Wang et al. 2001; Budovskaya et al. 2004; Stephan and Herman 2006; Kamada et al. 2010). The manner in which these signaling pathways regulate Atg1 activity and the precise role of this kinase in the autophagy process are presently matters of intense scrutiny.Although Atg1 kinase activity is required for the induction of autophagy, relatively little is known about how this enzyme is regulated in vivo. Two proteins associated with Atg1, Atg13 and Atg17, have been shown to be required for full Atg1 kinase activity both in vitro and in vivo (Kamada et al. 2000; Stephan et al. 2009). The roles of these proteins appear to be conserved through evolution as functional homologs of both have been identified in fruit flies and/or mammals (Hara et al. 2008; Chan et al. 2009; Chang and Neufeld 2009; Ganley et al. 2009; Hosokawa et al. 2009; Jung et al. 2009; Mercer et al. 2009). However, it is not yet clear precisely how these proteins stimulate Atg1 activity. In this study, we show that Atg1 is autophosphorylated within the activation loop and that this phosphorylation is required for both Atg1 kinase activity and the induction of autophagy. The activation loop is a structurally conserved element within the kinase domain and phosphorylation within this loop is often a necessary prerequisite for efficient substrate binding and/or phosphotransfer in the catalytic site (Johnson et al. 1996; Nolen et al. 2004). This loop generally corresponds to the sequence between two signature elements within the core kinase domain, the DFG and APE motifs (Hanks and Hunter 1995). Phosphorylation within this loop tends to result in a more ordered structure for this region and the proper positioning of key elements within the catalytic core of the kinase domain (Knighton et al. 1991; Johnson and O''reilly 1996; Huse and Kuriyan 2002). We found that Atg1 activation loop phosphorylation was correlated with the onset of autophagy and that replacing the site of phosphorylation with a phosphomimetic residue led to constitutive Atg1 autophosphorylation in vivo. In all, the data here suggest that Atg1 phosphorylation within its activation loop may be an important point of regulation within the autophagy pathway and models that discuss these data are presented.  相似文献   

11.
Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12–Atg5 conjugate functions as an E3‐like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12–Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation.  相似文献   

12.
Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)–G9a–H3K9me2 axis in fatty acid–induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid–treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid–treated cells. Inhibition of mTORC1 in fatty acid–treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid–treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid–treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1–G9a–H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.  相似文献   

13.
《Autophagy》2013,9(2):229-230
Autophagy, an evolutionarily conserved cellular process for bulk protein degradation through lysosomes, plays important roles in various physiological and pathological processes. Recent studies suggest that autophagy also participates in erythroid development. However, to what extent autophagy is involved in hematopoiesis is largely unknown. FIP200 (focal adhesion kinase family interacting protein of 200 kD) is a newly identified essential autophagy gene and a component of the ULK-Atg13-FIP200 complex. We show that mice lacking FIP200 in hematopoietic cells (CKO mice) experience perinatal lethality associated with severe erythroblastic anemia. FIP200 is cell-autonomously required for the maintenance and function of fetal hematopoietic stem cells (HSCs). FIP200 deletion in HSCs does not result in increased apoptosis. However, aberrantly increased HSC proliferation and myeloid expansion are found in CKO embryos, which may be responsible for the depletion of fetal HSCs. Consistent with an essential role of FIP200 in autophagy, FIP200-null fetal HSCs as well as other hematopoietic cells exhibit increased mitochondria mass and reactive oxygen species (ROS). Together, our data identify FIP200 as a key intrinsic regulator of fetal HSCs and suggest a role of autophagy in fetal hematopoiesis and the maintenance of fetal HSCs.  相似文献   

14.
Autophagy pathways in eukaryotic cells mediate the turnover of a diverse set of cytoplasmic components, including damaged organelles and abnormal protein aggregates. Autophagy-mediated degradation is highly regulated, and defects in these pathways have been linked to a number of human disorders. The Atg1 protein kinase appears to be a key site of this control and is targeted by multiple signaling pathways to ensure the appropriate autophagic response to changing environmental conditions. Despite the importance of this kinase, relatively little is known about the molecular details of Atg1 activation. In this study we show that Atg13, an evolutionarily conserved regulator of Atg1, promotes the formation of a specific Atg1 self-interaction in the budding yeast, Saccharomyces cerevisiae. The appearance of this Atg1-Atg1 complex is correlated with the induction of autophagy, and conditions that disrupt this complex result in diminished levels of both autophagy and Atg1 kinase activity. Moreover, the addition of a heterologous dimerization domain to Atg1 resulted in elevated kinase activity both in vivo and in vitro. The formation of this complex appears to be an important prerequisite for the subsequent autophosphorylation of Thr-226 in the Atg1 activation loop. Previous work indicates that this modification is necessary and perhaps sufficient for Atg1 kinase activity. Interestingly, this Atg1 self-association does not require Atg17, suggesting that this second conserved regulator might activate Atg1 in a manner mechanistically distinct from that of Atg13. In all, this work suggests a model whereby this self-association stimulates the autophosphorylation of Atg1 within its activation loop.  相似文献   

15.
Acute heat stress (aHS) can induce strong developmental defects in Caenorhabditis elegans larva but not lethality or sterility. This stress results in transitory fragmentation of mitochondria, formation of aggregates in the matrix, and decrease of mitochondrial respiration. Moreover, active autophagic flux associated with mitophagy events enables the rebuilding of the mitochondrial network and developmental recovery, showing that the autophagic response is protective. This adaptation to aHS does not require Pink1/Parkin or the mitophagy receptors DCT-1/NIX and FUNDC1. We also find that mitochondria are a major site for autophagosome biogenesis in the epidermis in both standard and heat stress conditions. In addition, we report that the depletion of the dynamin-related protein 1 (DRP-1) affects autophagic processes and the adaptation to aHS. In drp-1 animals, the abnormal mitochondria tend to modify their shape upon aHS but are unable to achieve fragmentation. Autophagy is induced, but autophagosomes are abnormally elongated and clustered on mitochondria. Our data support a role for DRP-1 in coordinating mitochondrial fission and autophagosome biogenesis in stress conditions.  相似文献   

16.
17.
Upon plating on basement membrane Matrigel, NIH3T3 cells formed an anastomosing network of cord-like structures, inhibitable by anti-alpha6beta1 integrin antibodies. For NIH3T3 cells transfected with human CD151 protein, the formation of a cord-like network was also inhibitable by anti-CD151 antibodies. Furthermore, CD151 and alpha6beta1 were physically associated within NIH3T3 cells. On removal of the short 8-amino acid C-terminal CD151 tail (by deletion or exchange), exogenous CD151 exerted a dominant negative effect, as it almost completely suppressed alpha6beta1-dependent cell network formation and NIH3T3 cell spreading on laminin-1 (an alpha6beta1 ligand). Importantly, mutant CD151 retained alpha6beta1 association and did not alter alpha6beta1-mediated cell adhesion to Matrigel. In conclusion, the CD151-alpha6beta1 integrin complex acts as a functional unit that markedly influences cellular morphogenesis, with the CD151 tail being of particular importance in determining the "outside-in" functions of alpha6beta1-integrin that follow ligand engagement. Also, antibodies to alpha6beta1 and CD151 inhibited formation of endothelial cell cord-like networks, thus pointing to possible relevance of CD151-alpha6beta1 complexes during angiogenesis.  相似文献   

18.
The RAD9–RAD1–HUS1 (9–1–1) clamp forms one half of the DNA damage checkpoint system that signals the presence of substantial regions of single-stranded DNA arising from replication fork collapse or resection of DNA double strand breaks. Loaded at the 5′-recessed end of a dsDNA–ssDNA junction by the RAD17–RFC clamp loader complex, the phosphorylated C-terminal tail of the RAD9 subunit of 9–1–1 engages with the mediator scaffold TOPBP1 which in turn activates the ATR kinase, localised through the interaction of its constitutive partner ATRIP with RPA-coated ssDNA. Using cryogenic electron microscopy (cryoEM) we have determined the structure of a complex of the human RAD17–RFC clamp loader bound to human 9–1–1, engaged with a dsDNA–ssDNA junction. The structure answers the key questions of how RAD17 confers specificity for 9–1–1 over PCNA, and how the clamp loader specifically recognises the recessed 5′ DNA end and fixes the orientation of 9–1–1 on the ssDNA.  相似文献   

19.
Organelle inheritance occurs during cell division. In Saccharomyces cerevisiae, inheritance of the vacuole, and the distribution of mitochondria and cortical endoplasmic reticulum are regulated by Ptc1p, a type 2C protein phosphatase. Here we show that PTC1/VAC10 controls the distribution of additional cargoes moved by a myosin-V motor. These include peroxisomes, secretory vesicles, cargoes of Myo2p, and ASH1 mRNA, a cargo of Myo4p. We find that Ptc1p is required for the proper distribution of both Myo2p and Myo4p. Surprisingly, PTC1 is also required to maintain the steady-state levels of organelle-specific receptors, including Vac17p, Inp2p, and Mmr1p, which attach Myo2p to the vacuole, peroxisomes, and mitochondria, respectively. Furthermore, Vac17p fused to the cargo-binding domain of Myo2p suppressed the vacuole inheritance defect in ptc1Δ cells. These findings suggest that PTC1 promotes the association of myosin-V with its organelle-specific adaptor proteins. Moreover, these observations suggest that despite the existence of organelle-specific receptors, there is a higher order regulation that coordinates the movement of diverse cellular components.  相似文献   

20.
Drastic protein degradation occurs during muscle atrophy induced by denervation, fasting, immobility, and various systemic diseases. Although the ubiquitin-proteasome system is highly up-regulated in denervated muscles, the involvement of autophagy and protein synthesis has been controversial. Here, we report that autophagy is rather suppressed in denervated muscles even under autophagy-inducible starvation conditions. This is due to a constitutive activation of mammalian target of rapamycin complex 1 (mTORC1). We further reveal that denervation-induced mTORC1 activation is dependent on the proteasome, which is likely mediated by amino acids generated from proteasomal degradation. Protein synthesis and ribosome biogenesis are paradoxically increased in denervated muscles in an mTORC1-dependent manner, and mTORC1 activation plays an anabolic role against denervation-induced muscle atrophy. These results suggest that denervation induces not only muscle degradation but also adaptive muscle response in a proteasome- and mTORC1-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号