首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss to what extent the vibrational spectra of bacteriorhodopsin that have been observed and assigned by Smith et al. (1, 2) by means of resonance Raman and by Gerwert and Siebert (EMBO (Eur. Mol. Biol. Organ.) J. In press) by means of infrared absorption experiments are in agreement with a photo-cycle of bacteriorhodopsin that involves the sequence BR, IO(all-trans) → K(13,14-cis) → L(13,14-cis) → M(13-cis) → N(13-cis) → O(all-trans). Our discussion is based on a quantumchemical modified neglect of diatomic overlap [MNDO] calculation of the vibrational spectra of the relevant isomers of the protonated retinal Schiff base. In particular, we investigated in these calculations the effects of different charge environments on the frequencies of the relevant C-C single bond stretching vibrations of these isomers.  相似文献   

2.
Light-driven proton transport in bacteriorhodopsin (BR) is achieved by dynamic rearrangement of the hydrogen-bonding network inside the membrane protein. Arg82 is located between the Schiff base region and proton release group, and has a major influence on the pK(a) values of these groups. It is believed that Arg82 changes its hydrogen-bonding acceptors during the pump cycle of BR, stages of which are correlated with proton movement along the transport pathway. In this study, we compare low-temperature polarized FTIR spectra of [eta(1,2)-(15)N]arginine-labeled BR in the 2750-2000 cm(-1) region with those of unlabeled BR for the K, L, M, and N intermediates. In the K-minus-BR difference spectra, (15)N-shifted modes were found at 2292 (-)/2266 (+) cm(-1) and at 2579 (-)/2567 (+) cm(-1). The former corresponds to strong hydrogen bonding, while the latter corresponds to very weak hydrogen bonding. Both N-D stretches probably originate from Arg82, the former oriented toward water 406 and the latter toward the extracellular side, and both hydrogen bonds are somewhat strengthened upon retinal photoisomerization. This perturbation of arginine hydrogen bonding is entirely relaxed in the L intermediate where no (15)N-isotope shifts are observed in the difference spectrum. In the M intermediate, the frequency is not significantly altered from that in BR. However, the polarized FTIR spectra strongly suggest that the dipolar orientation of the strongly hydrogen bonded N-D group of Arg82 is changed from perpendicular to parallel to the membrane plane. Such a change is presumably related to the motion of the Arg82 side chain from the Schiff base region to the extracellular proton release group. Additional bands corresponding to weak hydrogen bonding were observed in both the M-minus-BR and N-minus-BR spectra. Changes in hydrogen-bonding structures involving Arg82 are discussed on the basis of these FTIR observations.  相似文献   

3.
Oxidation of methionine residues is involved in several biochemical processes and in degradation of therapeutic proteins. The relationship between conformational stability and methionine oxidation in recombinant human interleukin-1 receptor antagonist (rhIL-1ra) was investigated to document how thermodynamics of unfolding affect methionine oxidation in proteins. Conformational stability of rhIL-1ra was monitored by equilibrium urea denaturation, and thermodynamic parameters of unfolding (DeltaGH2O, m, and Cm) were estimated at different temperatures. Methionine oxidation induced by hydrogen peroxide at varying temperatures was monitored during "coincubation" of rhIL-1ra with peptides mimicking specific regions of the reactive methionine residues in the protein. The coincubation study allowed estimation of oxidation rates in protein and peptide at each temperature from which normalized oxidation rate constants and activation energies were calculated. The rate constants for buried Met-11 in the protein were lower than for methionine in the peptide with an associated increase in activation energy. The rate constants and activation energy of solvent exposed methionines in protein and peptide were similar. The results showed that conformational stability, monitored using the Cm value, has an effect on oxidation rates of buried methionines. The rate constant of buried Met-11 correlated well with the Cm value but not DeltaGH2O. No correlation was observed for the oxidation rates of solvent-exposed methionines with any thermodynamic parameters of unfolding. The findings presented have implications in protein engineering, in design of accelerated stability studies for protein formulation development, and in understanding disease conditions involving protein oxidation.  相似文献   

4.
Crystals of a fragment of human fibronectin encompassing the 7th through the RGD-containing 10th type III repeats (FN7–10) have been produced with protein expressed in E. coli. The crystals are monoclinic with one molecule in the asymmetric unit and diffract to beyond 2.0 Å Bragg spacings. A mutant FN7–10 was produced in which three methionines, in addition to the single native methionine already present, have been introduced by site-directed mutagenesis. Diffraction-quality crystals of this mutant protein have been grown in which methionine was replaced with selenomethionine. The introduction of methionine by site-directed mutagenesis to allow phasing from selenomethionyl-substituted crystals is shown to be feasible by this example and is proposed as a general approach to solving the crystallographic phase problem. Strategies for selecting propitious sites for methionine mutations are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Circular dichroic (CD) spectra of three related protein pigments from Halobacterium halobium, halorhodopsin (HR), bacteriorhodopsin (BR), and sensory rhodopsin I (SR-I), are compared. In native membranes the two light-driven ion pumps, HR and BR, exhibit bilobe circular dichroism spectra characteristic of exciton splitting in the region of retinal absorption, while the phototaxis receptor, SR-I, exhibits a single positive band centered at the SR-I absorbance maximum. This indicates specific aggregation of protein monomers of HR, as previously noted [Sugiyama, Y., & Mukohata, Y. (1984) J. Biochem. (Tokyo) 96, 413-420], similar to the well-characterized retinal/retinal exciton interaction in the purple membrane. The absence of this interaction in SR-I indicates SR-I is present in the native membrane as monomers or that interactions between the retinal chromophores are weak due to chromophore orientation or separation. Solubilization of HR and BR with nondenaturing detergents eliminates the exciton coupling, and the resulting CD spectra share similar features in all spectral regions from 250 to 700 nm. Schiff-base deprotonation of both BR and HR yields positive CD bands near 410 nm and shows similar fine structure in both pigments. Removal of detergent restores the HR native spectrum. HR differs from BR in that circular dichroic bands corresponding to both amino acid and retinal environments are much more sensitive to external salt concentration and pH. A theoretical analysis of the exciton spectra of HR and BR that provides a range of interchromophore distances and orientations is performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Fourier transform infrared (FTIR) difference spectra are presented for bacteriorhodopsin (BR) at low temperature. Previous FTIR measurements have identified several tyrosine residues that change their absorption characteristics between light-adapted BR and dark-adapted BR, or between intermediates K and M [Dollinger, G., Eisenstein, L., Lin, S.-L., Nakanishi, K., Odashima, K., & Termini, J. (1986) Methods Enzymol. 127, 649-662]. These changes were explained by protonation/deprotonation of tyrosine moieties and perturbation of the protein environment surrounding tyrosines. A tyrosine deprotonation was observed to occur between intermediates K and M. The present studies confine the deprotonation to being between intermediates L and M and show that no tyrosines undergo changes between the K and the L states. Evidence is presented that none of the tyrosines undergoing changes at low temperature can be assigned to tyrosine-64. The environmental changes of these tyrosines are discussed in relation to the proton pumping mechanism. Their spatial relation to the chromophore is also discussed. At least two tyrosines are suggested to reside close to the retinal binding site. The reactive groups of the nitrated tyrosine-64 are speculated to be remote from the Schiff base and the active tyrosines but can possibly interact sterically with the ionone ring of the retinal.  相似文献   

7.
The tertiary structural changes occurring during the photocycle of bacteriorhodopsin (BR) are assigned by X-ray diffraction to distinct M states, M1 and M2. Purple membranes (PM) of the mutant Asp96Asn at 15, 57, 75 and 100% relative humidity (r.h.) were studied in a parallel X-ray diffraction and Fourier transform infrared (FTIR) spectroscopic investigation. Light-dependent conformational changes of BR-Asp96Asn are observed at high hydration levels (100 and 75% r.h.) but not in partially dehydrated samples (57 and 15% r.h.). The FTIR spectra of continuously illuminated samples at low and high hydration, despite some differences, are characteristic of the M intermediate. The changes in diffraction patterns of samples in the M2 state are of the same magnitude as those of wild-type samples trapped with GuaHCl in the M(G) state. Additional large changes in the amide bands of the FTIR spectra occur between M2 and M(G). This suggests, that the tertiary structural changes between M1 and M2 are responsible for the switch opening the cytoplasmic half-channel of BR for reprotonation to complete the catalytic cycle. These tertiary structural changes seem to be triggered by a charge redistribution which might be a common feature of retinal proteins also in signal transduction.  相似文献   

8.
Neurospora rhodopsin (NR, also known as NOP-1) is the first rhodopsin of the haloarchaeal type found in eucaryotes. NR demonstrates a very high degree of conservation of the amino acids that constitute the proton-conducting pathway in bacteriorhodopsin (BR), a light-driven proton pump of archaea. Nevertheless, NR does not appear to pump protons, suggesting the absence of the reprotonation switch that is necessary for the active transport. The photocycle of NR is much slower than that of BR, similar to the case of pharaonis phoborhodopsin (ppR), an archaeal photosensory protein. The functional and photochemical differences between NR and BR should be explained in the structural context. In this paper, we studied the structural changes of NR following retinal photoisomerization by means of low-temperature Fourier transform infrared (FTIR) spectroscopy and compared the obtained spectra with those for BR. For the spectroscopic analysis, we established the light-adaptation procedure for NR reconstituted into 1,2-dimyristoyl-sn-glycero- 3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phosphate (DMPC/DMPA) liposomes, which takes approximately 2 orders of magnitudes longer than in BR. The structure of the retinal chromophore and the hydrogen-bonding strength of the Schiff base in NR are similar to those in BR. Unique spectral features are observed for the S-H stretching vibrations of cysteine and amide-I vibrations for NR before and after retinal isomerization. In NR, there are no spectral changes assignable to the amide bands of alpha helices. The most prominent difference between NR and BR was seen for the water O-D stretching vibrations (measured in D(2)O). Unlike for haloarchaeal rhodopsins such as BR and ppR, no O-D stretches of water under strong hydrogen-bonded conditions (<2400 cm(-1)) were observed in the NR(K) minus NR difference spectra. This suggests a unique hydrogen-bonded network of the Schiff base region, which may be responsible for the lack of the reprotonation switch in NR.  相似文献   

9.
Ye M  Zhang QL  Li H  Weng YX  Wang WC  Qiu XG 《Biophysical journal》2007,93(8):2756-2766
The infrared (IR) absorption of the amide I band for the loop structure may overlap with that of the alpha-helices, which can lead to the misassignment of the protein secondary structures. A resolution-enhanced Fourier transform infrared (FTIR) spectroscopic method and temperature-jump (T-jump) time-resolved IR absorbance difference spectra were used to identify one specific loop absorption from the helical IR absorption bands of horse heart cytochrome c in D2O at a pD around 7.0. This small loop consists of residues 70-85 with Met-80 binding to the heme Fe(III). The FTIR spectra in amide I' region indicate that the loop and the helical absorption bands overlap at 1653 cm(-1) at room temperature. Thermal titration of the amide I' intensity at 1653 cm(-1) reveals that a transition in loop structural change occurs at lower temperature (Tm=45 degrees C), well before the global unfolding of the secondary structure (Tm approximately 82 degrees C). This loop structural change is assigned as being triggered by the Met-80 deligation from the heme Fe(III). T-jump time-resolved IR absorbance difference spectra reveal that a T-jump from 25 degrees C to 35 degrees C breaks the Fe-S bond between the Met-80 and the iron reversibly, which leads to a loop (1653 cm(-1), overlap with the helical absorption) to random coil (1645 cm(-1)) transition. The observed unfolding rate constant interpreted as the intrachain diffusion rate for this 16 residue loop was approximately 3.6x10(6) s(-1).  相似文献   

10.
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.  相似文献   

11.
Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII) function as a light-driven proton pump and a receptor for negative phototaxis in haloarchaeal membranes, respectively. SRII transmits light signals through changes in protein-protein interaction with its transducer HtrII. Recently, we converted BR by three mutations into a form capable of transmitting photosignals to HtrII to mediate phototaxis responses. The BR triple mutant (BR-T) provides an opportunity to identify structural changes necessary to activate HtrII by comparing light-induced infrared spectral changes of BR, BR-T, and SRII. The hydrogen out-of-plane (HOOP) vibrations of the BR-T were very similar to those of SRII, indicating that they are distributed more extensively along the retinal chromophore than in BR, as in SRII. On the other hand, the bands of the protein moiety in BR-T are similar to those of BR, indicating that they are not specific to photosensing. The alteration of the O-H stretching vibration of Thr-204 in SRII, which we had previously shown to be essential for signal relay to HtrII, occurs also in BR-T. In addition, 1670(+)/1664(-) cm(-1) bands attributable to a distorted alpha-helix were observed in BR-T in a HtrII-dependent manner, as is seen in SRII. Thus, we identified similarities and dissimilarities of BR-T to BR and SRII. The results suggest signaling function of the structural changes of the HOOP vibrations, the O-H stretching vibration of the Thr-215 residue, and a distorted alpha-helix for the signal generation. We also succeeded in measurements of L minus initial state spectra of BR-T, which are the first FTIR spectra of L intermediates among sensory rhodopsins.  相似文献   

12.
Sumii M  Furutani Y  Waschuk SA  Brown LS  Kandori H 《Biochemistry》2005,44(46):15159-15166
Leptosphaeria rhodopsin (LR) is an archaeal-type rhodopsin found in fungi, and is the first light-driven proton-pumping retinal protein from eukaryotes. LR pumps protons in a manner similar to that of bacteriorhodopsin (BR), a light-driven proton pump of haloarchaea. The amino acid sequence of LR is more homologous to that of Neurospora rhodopsin (NR) than BR, whereas NR has no proton-pumping activity. These facts raise the question of how the proton-pumping function is achieved. In this paper, we studied structural changes of LR following the retinal photoisomerization by means of low-temperature Fourier transform infrared (FTIR) spectroscopy, and compared the obtained spectra with those for BR and NR. While the light-induced photoisomerization from the all-trans to 13-cis form was commonly observed among LR, BR, and NR, we found that the structural changes of LR are closer to those of BR than to those of NR in terms of detailed vibrational bands of retinal and protein. The most prominent difference was seen for the water O-D stretching vibrations (measured in D2O). LR exhibits an O-D stretch of water at 2257 cm(-1), indicating the presence of a strongly hydrogen-bonded water molecule. Such strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) were observed for BR, but not for NR. Comprehensive studies of BR mutants and archaeal rhodopsins have revealed that strongly hydrogen-bonded water molecules are found only in the proteins exhibiting proton-pumping activity, suggesting that strongly hydrogen-bonded water molecules and transient weakening of their binding are essential for the proton-pumping function of rhodopsins. This observation for LR provided additional experimental evidence of the correlation between strongly hydrogen-bonded water molecules and proton-pumping activity of archaeal rhodopsins.  相似文献   

13.
In order to further explore the tolerance of proteins to amino acid substitutions within the interior, a series of core residues was replaced by methionine within the C-terminal domain of T4 lysozyme. By replacing leucine, isoleucine, valine and phenylalanine residues a total of 10 methionines could be introduced, which corresponds to a third of the residues that are buried in this domain. As more methionines are incorporated the protein gradually loses stability. This is attributed in part to a reduction in hydrophobic stabilization, in part to the increased entropic cost of localizing the long, flexible methionine sidechains, and in part to steric clashes. The changes in structure of the mutants relative to the wildtype protein are modest but tend to increase in an additive fashion as more methionines are included. In the most extreme case, namely the 10-methionine mutant, much of the C-terminal domain remains quite similar to wildtype (root-mean-square backbone shifts of 0.56 Å), while the F and G helices undergo rotations of approximately 20° and center-of-mass shifts of approximately 1.4 Å. For up to six methionine substitutions the changes in stability are additive. Beyond this point, however, the multiple mutants are somewhat more stable than suggested from the sum of their constituents, especially for those including the replacement Val111→Met. This is interpreted in terms of the larger structural changes associated with this substitution. The substituted sidechains in the mutant structures have somewhat higher crystallographic thermal factors than their counterparts in WT*. Nevertheless, the interiors of the mutant proteins retain a well-defined structure with little suggestion of molten-globule characteristics. Lysozymes in which selenomethionine has been incorporated rather than methionine tend to have increased stability. At the same time they also fold faster. This provides further evidence that, at the rate-limiting step in folding, the structure of the C-terminal domain of T4 lysozyme is similar to that of the fully folded protein.  相似文献   

14.
A significant specific increase in the actin carbonyl content has been recently demonstrated in human brain regions severely affected by the Alzheimer's disease pathology, in postischemic isolated rat hearts, and in human intestinal cell monolayers following incubation with hypochlorous acid (HOCl). We have very recently shown that exposure of actin to HOCl results in the immediate loss of Cys-374 thiol, oxidation of some methionine residues, and, at higher molar ratios of oxidant to protein, increase in protein carbonyl groups, associated with filament disruption and inhibition of filament formation. In the present work, we have studied the effect of methionine oxidation induced by chloramine-T (CT), which at neutral or slightly alkaline pH oxidizes preferentially Met and Cys residues, on actin filament formation and stability utilizing actin blocked at Cys-374. Methionines at positions 44, 47, and 355, which are the most solvent-exposed methionyl residues in the actin molecule, were found to be the most susceptible to oxidation to the sulfoxide derivative. Met-176, Met-190, Met-227, and Met-269 are the other sites of the oxidative modification. The increase in fluorescence associated with the binding of 8-anilino-1-naphtalene sulfonic acid to hydrophobic regions of the protein reveals that actin surface hydrophobicity increases with oxidation, indicating changes in protein conformation. Structural alterations were confirmed by the decreased susceptibility to proteolysis and by urea denaturation curves. Oxidation of some critical methionines (those at positions 176, 190, and 269) causes a complete inhibition of actin polymerization and severely affects the stability of actin filaments, which rapidly depolymerize. The present results would indicate that the oxidation of some critical methionines disrupts specific noncovalent interactions that normally stabilize the structure of actin filaments. We suggest that the process involving formation of actin carbonyl derivatives would occur at an extent of oxidative insult higher than that causing the oxidation of some critical methionine residues. Therefore, methionine oxidation could be a damaging event preceding the appearance of carbonyl groups on actin and a major cause for the functional impairment of the carbonylated protein recently observed both in vivo and in vitro.  相似文献   

15.
Oxidation of protein methionines to methionine sulfoxides can result in protein structural alterations with a wide variety of biological implications. Factors that determine susceptibility to oxidation are not well understood. The recent JBC Editors Pick by Walker et al. applied proteomic methodologies to show that the oxidative susceptibility of buried methionine residues is strongly correlated with folding stability of the contextual peptide. Proteome-wide analysis of oxidation-susceptible methionines promises to answer open questions about the biological functions of reversible methionine oxidation.  相似文献   

16.
Multi-wavelength anomalous diffraction phasing is especially useful for high-throughput structure determinations. Selenomethionine substituted proteins are commonly used for this purpose. However, the cytotoxicity of selenomethionine drastically reduces the efficiency of its incorporation in in vivo expression systems. In the present study, an improved E. coli cell-free protein synthesis system was used to incorporate selenomethionine into a protein, so that highly efficient incorporation could be achieved. A milligram quantity of selenomethionine-containing Ras was obtained using the cell-free system with dialysis. The mass spectrometry analysis showed that more than 95% of the methionine residues were substituted with selenomethionine. The crystal of this protein grew under the same conditions and had the same unit cell constants as those of the native Ras protein. The three-dimensional structure of this protein, determined by multi-wavelength anomalous diffraction phasing, was almost the same as that of the Ras protein prepared by in vivo expression. Therefore, the cell-free synthesis system could become a powerful protein expression method for high-throughput structure determinations by X-ray crystallography.  相似文献   

17.
Kandori H  Shimono K  Shichida Y  Kamo N 《Biochemistry》2002,41(14):4554-4559
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption spectrum with a spectral shoulder, which is highly unique for the archaeal rhodopsin family. The primary reaction of ppR is a cis-trans photoisomerization of the retinal chromophore to form the K intermediate, like the well-studied proton pump bacteriorhodopsin (BR). Recent comparative FTIR spectroscopy of the K states in ppR and BR revealed that more extended structural changes take place in ppR than in BR with respect to chromophore distortion and protein structural changes [Kandori, H., Shimono, K., Sudo, Y., Iwamoto, M., Shichida, Y., and Kamo, N. (2001) Biochemistry 40, 9238-9246]. FTIR spectroscopy of the N105D mutant protein reported here assigns the vibrational bands at 1704 and 1700 cm(-1) as C=O stretches of Asn105 in ppR and ppR(K), respectively. A comparative investigation between ppR and BR further reveals that the structure at position 105 in ppR is similar to that of the corresponding position (Asp115) in BR; this observation is supported by the recent X-ray crystallographic structures of ppR [Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001) Science 293, 1499-1503; Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroulla, E., and Navarro, J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 10131-10136]. Nevertheless, structural changes upon photoisomerization at position 105 in ppR are greater than those at position 115 in BR. As a consequence of a unique chromophore-protein interaction in ppR, extended protein structural changes accompanying retinal photoisomerization occur, and these include Asn105 which is approximately 7 A from the retinal chromophore.  相似文献   

18.
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.Key words: immunoglobulin gamma antibody, methionine sulfoxide, oxidation, photo-oxidation, methionine sulfoxide reductase  相似文献   

19.
Protein-arginine methyltransferases aid in the regulation of many biological processes by methylating specific arginyl groups within targeted proteins. The varied nature of the response to methylation is due in part to the diverse product specificity displayed by the protein-arginine methyltransferases. In addition to site location within a protein, biological response is also determined by the degree (mono-/dimethylation) and type of arginine dimethylation (asymmetric/symmetric). Here, we have identified two strictly conserved methionine residues in the PRMT1 active site that are not only important for activity but also control substrate specificity. Mutation of Met-155 or Met-48 results in a loss in activity and a change in distribution of mono- and dimethylated products. The altered substrate specificity of M155A and M48L mutants is also evidenced by automethylation. Investigation into the mechanistic basis of altered substrate recognition led us to consider each methyl transfer step separately. Single turnover experiments reveal that the rate of transfer of the second methyl group is much slower than transfer of the first methyl group in M48L, especially for arginine residues located in the center of the peptide substrate where turnover of the monomethylated species is negligible. Thus, altered product specificity in M48L originates from the differential effect of the mutation on the two rates. Characterization of the two active-site methionines provides the first insight into how the PRMT1 active site is engineered to control product specificity.  相似文献   

20.
The production and spectroscopic properties of an L-selenomethionine-containing homolog of Pseudomonas aeruginosa azurin are described. The amino acid substitution was carried out by developing an L-methionine-dependent bacterial strain from a fully functional ATCC culture. Uptake studies monitored using L-[75Se]methionine indicated that L-selenomethionine was incorporated into the protein synthetic pathway of Pseudomonas bacteria in a manner analogous to L-methionine. Several batches of bacteria were grown, and one sample of isolated and purified selenoazurin (azurin in which methionine was substituted by selenomethionine) was found (by neutron activation analysis) to contain 5.2 +/- 0.8 seleniums/copper. Correspondingly, a residual 0.35 methionines, relative to 6.0 in the native protein, were found by amino acid analysis in this azurin sample. The redox potential and extinction coefficient of this selenoazurin were found to be 333 +/- 1 mV (pH 7.0, I = 0.22) and 5855 +/- 160 M-1 cm-1 at 626 +/- 1 nm, respectively. Visible electronic, CD, and EPR spectra are reported and Gaussian curve fitting to the former spectrum allowed assignment of the selenomethionine Se----Cu(II) transition to a band found at 18034 cm-1, based upon an observed 450 cm-1 shift to the red from the analogous band position in the native protein. The data are consistent with a relatively more covalent copper site stabilizing the reduced, Cu(I), form in the selenoprotein. A role for the methionine as a modulator of the blue copper site redox potential by metal----ligand back bonding from Cu(I) is discussed in terms of a ligand sphere which limits the valence change at copper to much less than 1 during a redox cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号